Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21090048-6    https://doi.org/10.11896/cldb.21090048
  金属与金属基复合材料 |
Zn-Al合金超声空化数值模拟和细晶强化机理研究
陈海燕1,*, 王超1, 潘美诗1, 吉西西1, 曾越1, 安义博1, 邹燕成2
1 广东工业大学材料与能源学院,广州 510006
2 惠州市惠阳广杰五金制品有限公司,广东 惠州 516221
Numerical Simulation of Ultrasonic Cavitation in Zn-Al Alloy and Study on Its Grain Refinement and Strengthening Mechanism
CHEN Haiyan1,*, WANG Chao1, PAN Meishi1, JI Xixi1, ZENG Yue1, AN Yibo1, ZOU Yancheng2
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
2 Huizhou Huiyang Guangjie Hardware Products Co., Ltd., Huizhou 516221, Guangdong, China
下载:  全 文 ( PDF ) ( 9048KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究超声波对ZnAl8合金的显微组织和性能的影响,在390 ℃ 的ZnAl8合金熔池中开展了不同功率的超声熔炼试验,结合数值分析法求解KM-polytropic和Mettin方程,研究了ZnAl8熔池中超声空化泡群的生长规律和空化效应。研究表明:当超声功率为700 W时,固液共存区390 ℃时施加超声振动能有效消除树枝晶组织,超声产生的脉冲压强达到200 MPa以上,泡壁温度高达3 200 K,对先析出的α(Al)相进行了有效破碎和熔蚀,碎片成为结晶的形核点,凝固后获得了均匀的α(Al)相细小蔷薇组织;铸态合金的断后伸长率为13.62%,抗拉强度达到232 MPa,与不施加超声的常规熔铸的合金相比,其塑性和强度分别提高了48%、12%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海燕
王超
潘美诗
吉西西
曾越
安义博
邹燕成
关键词:  超声波  数值分析  超声空化效应  锌铝合金    
Abstract: In order to study the effect of ultrasonic on the microstructure and properties of ZnAl8 alloy, ultrasonic melting experiments with different po-wer were carried out in the molten pool of ZnAl8 alloy at 390 ℃. In combination with numerical analysis method to solve the KM-polytropic and Mettin equations, the growth law and cavitation effect of ultrasonic cavitation and bubble group in the molten pool of ZnAl8 alloy were studied.The results showed that when ultrasound was 700 W, the application of ultrasonic vibration in the solid-liquid coexistence zone at 390 ℃ effectively eliminated the dendritic structure,the pulse pressure generated by ultrasonic reached more than 200 MPa, the bubble wall temperature reached as high as 3 200 K, and the effective crushing and pre-precipitated α(Al) phase were carried out and the fragments became nucleation points of crystallization. After solidification, uniform α(Al) phase microstructures were obtained. The elongation after fracture of the as-cast alloy was 13.62%, and the tensile strength reached 232 MPa, in contrast to conventional melt casting techniques without ultrasonic, the plasticity and strength of the alloy were increased by 48% and 12%, respectively.
Key words:  ultrasonic    numerical analysis    ultrasonic cavitation    zinc aluminum alloy
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TG425+.1  
基金资助: 广东工业大学大学生创新训练项目(xi2022118450638)
通讯作者:  * 陈海燕,广东工业大学材料与能源学院副教授、硕士研究生导师。2012年12月获广东工业大学材料学博士学位。主要从事新型钎焊材料方面的研究,发表论文50余篇,授权专利10余项。gdutchy1@163.com   
引用本文:    
陈海燕, 王超, 潘美诗, 吉西西, 曾越, 安义博, 邹燕成. Zn-Al合金超声空化数值模拟和细晶强化机理研究[J]. 材料导报, 2023, 37(7): 21090048-6.
CHEN Haiyan, WANG Chao, PAN Meishi, JI Xixi, ZENG Yue, AN Yibo, ZOU Yancheng. Numerical Simulation of Ultrasonic Cavitation in Zn-Al Alloy and Study on Its Grain Refinement and Strengthening Mechanism. Materials Reports, 2023, 37(7): 21090048-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090048  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21090048
1 Qian W, Lin Z, Chen X G, et al. Materials and Design, 2016, 107, 41.
2 Peng H P, Li Z W, Zhu J Q, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(3), 595.
3 Liu X, Xue L Q, Chen S Y, et al. Foundry Technology, 2016, 37(8), 1680 (in Chinese).
刘学, 薛力强, 陈淑英, 等. 铸造技术, 2016, 37(8), 1680.
4 Mao F, Ou L M, Qiao Y F, et al. Rare Metals, 2021, 45(4), 393 (in Chinese).
毛丰, 欧黎明, 乔永枫, 等. 稀有金属, 2021, 45(4), 393.
5 Xiong J J, Yan H, Zhong S G, et al. Metals, 2019, 9(1), 108.
6 Jiang H F. An investigation on modification of zinc-aluminum alloy used for die casting. Master's Thesis, Central South University, China, 2013(in Chinese).
蒋浩帆. 压铸用锌铝合金的变质处理研究. 硕士学位论文, 中南大学, 2013.
7 Li H, Li C, Li Z X. Journal of Materials Engineering, 2017, 45(5), 118(in Chinese).
李红, 李灿, 栗卓新. 材料工程, 2017, 45(5), 118.
8 Jiang J F, Wang Y. Materials Science & Engineering A, 2015, 639, 350.
9 Li S M, Li C Y, Liu Y, et al. Journal of Chongqing University of Technology(Natural Science), 2022, 36(5), 12210(in Chinese).
李上民, 李春雨, 刘运, 等. 重庆理工大学学报(自然科学版), 2022, 36(5), 12210.
10 Das A, Kotadia H R. Materials Chemistry and Physics, 2011, 125, 853.
11 Patel B, Chaudhari G P, Bhingole P P. Materials Letters, 2012, 66(1), 335.
12 Kong W, Cang D Q, Wang W B. Science Technology and Engineering, 2010, 10(35), 8696(in Chinese).
孔为, 苍大强, 王文波. 科学技术与工程, 2010, 10(35), 8696.
13 Li X Q, Deng J, Lin S. Special Casting & Nonferrous Alloys, 2013, 33(5), 395 (in Chinese).
李晓谦, 邓静, 林森. 特种铸造及有色合金, 2013, 33(5), 395.
14 Chen H Y, Chen Z L, La Z M, et al. Journal of Materials Processing Technology, 2019, 266, 619.
15 Maeda K, Colonius T. Journal of Fluid Mechanics, 2019, 862, 1105.
16 Chen H Y, Zeng Y, Li Y, et al. Journal of Materials Engineering, 2021, 49(7), 133 (in Chinese).
陈海燕, 曾越, 李艺, 等. 材料工程, 2021, 49(7), 133.
17 Straumal B B, Mazilkin A A, Sauvage X, et al. Physical Metallurgy and Heat Treatment, 2014, 6, 44.
18 Feng X H, Zhao F Z, Jia H M, et al. Ultrasonics Sonochemistry, 2018, 4, 113.
19 Eskin G I, Eskin D G. Ultrasonic treatment of light alloy metals, CRC Press, Boca Raton, 2015, pp. 320.
20 Keller J B, Miksis M. Journal of the Acoustical Society of America, 1980, 68(2), 628.
[1] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[2] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[3] 任智翔, 杨康, 李肽脂, 迂晨, 詹华, 吴锋, 李辉. 超声波辅助氧化改性钙基吸收剂的制备及性能研究[J]. 材料导报, 2022, 36(2): 21010211-5.
[4] 杨现臣, 李新梅. 摩擦接触表面温度测量技术研究进展[J]. 材料导报, 2022, 36(12): 20080251-9.
[5] 陈猛, 颜鑫, 陈建淞, 孙影杰. 回收轮胎聚合物纤维混凝土高温损伤超声特性研究[J]. 材料导报, 2022, 36(11): 21030318-6.
[6] 李丹, 李书良, 柴玉琨, 刘健, 林震霞. 燃料包壳管超声波幅与缺陷深度对应关系[J]. 材料导报, 2021, 35(Z1): 473-475.
[7] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[8] 崔庆贺, 马琳, 周长壮, 梁金第, 宋雨键. 硅酸盐玻璃/铝合金异种材料连接综述[J]. 材料导报, 2021, 35(15): 15107-15114.
[9] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[10] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[11] 马志鹏, 张茗瑄, 于海洋, 许志武, 闫久春. 超声作用下SiC陶瓷表面振动强度分布模拟[J]. 材料导报, 2020, 34(20): 20015-20021.
[12] 薛海涛, 魏鑫, 郭卫兵, 张新宇. 活性元素Al对超声波钎焊Mo接头组织和力学性能的影响规律[J]. 材料导报, 2020, 34(20): 20103-20106.
[13] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[14] 彭和, Chen Daolun, 蒋显全, 白雪飞. 金属材料超声波点焊研究进展[J]. 材料导报, 2020, 34(11): 11064-11070.
[15] 肖乾坤, 朱政强, 李铭锋. 紫铜超声波焊接微观结构演变及再结晶研究[J]. 材料导报, 2020, 34(10): 10157-10161.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed