Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20015-20021    https://doi.org/10.11896/cldb.19070004
  无机非金属及其复合材料 |
超声作用下SiC陶瓷表面振动强度分布模拟
马志鹏1,2, 张茗瑄1, 于海洋1, 许志武2, 闫久春2
1 东北石油大学材料科学与工程系,大庆 163318
2 哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
Simulation of Vibration Intensity Distribution of SiC Ceramic Surface Under Ultrasonic
MA Zhipeng1,2, ZHANG Mingxuan1, YU Haiyang1, XU Zhiwu2, YAN Jiuchun2
1 Department of Materials Science and Engineering, Northeast Petroleum University, Daqing 163318, China
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 5564KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用ANSYS有限元模拟软件进行超声作用下SiC陶瓷的瞬态分析及谐响应分析。利用激光测振仪对超声作用下SiC陶瓷表面的振动强度和振动分布进行了研究。结果表明:施加超声后SiC陶瓷表面的超声振动沿超声工具头向四周扩散,SiC陶瓷表面的振动强度分布迅速变化,振动首先到达距工具头较近的三个边界,随后到达较远的边界,随着超声时间的延长,SiC陶瓷表面的振动达到谐响应稳定状态。随着超声振幅的增加,SiC陶瓷表面的振动强度增加,当超声振幅为4 μm时在一周期内SiC陶瓷表面振动强度幅值可达18.6 μm,当超声振幅为8 μm时振动强度幅值为36.6 μm。施加超声后,SiC陶瓷表面振动强度在水平中心线上,沿超声工具头向右边界逐渐增大,并沿水平中心线向两边界逐渐增大;在超声的作用下,SiC陶瓷表面超声工具头圆心位置处的振动为正弦波动,沿远离工具头的方向,振动不再是正弦分布,但也呈现出正弦波动的部分特性。研究超声作用下SiC陶瓷表面的振动分布特性及传播规律,有助于掌握超声波辅助钎焊SiC陶瓷的连接方法与机理,使得超声波技术在SiC陶瓷钎焊工业中的应用成为可能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马志鹏
张茗瑄
于海洋
许志武
闫久春
关键词:  超声波  SiC陶瓷  振动强度  钎料铺展    
Abstract: The transient analysis and harmonic response analysis of SiC ceramics under ultrasonic action were performed using ANSYS finite element simulation software. The vibration intensity and vibration distribution of SiC ceramic surface under ultrasonic action were investaged by the laser vibrometer. The results show that the ultrasonic vibration of the SiC ceramic surface spreads around the ultrasonic tool head after the application of ultrasonic. The vibration intensity distribution of the SiC ceramic surface changes rapidly. The vibration first reaches the three boundaries closer to the ultrasonic tool head, and then reaches the farther boundary. With the increase of ultrasonic time, the vibration of SiC ceramics reaches a steady state of harmonic response. The vibration intensity of SiC ceramic surface increases with the increase of ultrasonic amplitude. When the ultrasonic amplitude is 4 μm, the amplitude of the ceramic surface vibration intensity can reach 18.6 μm in one period. When the ultrasonic amplitude is 8 μm, the vibration intensity amplitude is 36.6 μm. After the application of ultrasonic, the vibration intensity of the SiC ceramic surface is on the horizontal centerline, which gradually increases along the right edge of the ultrasonic tool head, and gradually increases along the horizontal centerline toward the two boundaries. Under the action of ultrasonic, the vibration at the center of the ultrasonic tool head on the ceramic surface is sinusoidal. In the direction away from the tool head, the vibration is no longer sinusoidal, but it also shows some characteristics of sinusoidal fluctuation. The vibration distribution characteristics and propagation law of SiC ceramic surface under the action of ultrasonic were analyzed. It can help to grasp the bonding method and mechanism of ultrasonic-assisted brazing of SiC ceramics, which makes the application of ultrasonic technology in SiC ceramic brazing possible.
Key words:  ultrasonic    SiC ceramic    vibration intensity    solder spread
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TG454  
基金资助: 国家自然科学基金面上项目(51674090)
通讯作者:  mazhipeng77@163.com   
作者简介:  马志鹏,东北石油大学教授,博士研究生导师。2011年11月毕业于哈尔滨工业大学材料科学与工程学院,获得工学博士学位。2001年在东北石油大学材料科学与工程系工作至今。在国内外学术期刊上发表论文20余篇,申请国家发明专利13项,其中授权11项。其团队主要研究方向包括非接触电磁超声波、陶瓷与金属的界面反应、界面层的反应机制等。
张茗瑄,2017年7月毕业于哈尔滨理工大学,获得学士学位。2017年9月至今就读于东北石油大学材料科学与工程系,主要从事超声辅助钎焊方面的研究。
引用本文:    
马志鹏, 张茗瑄, 于海洋, 许志武, 闫久春. 超声作用下SiC陶瓷表面振动强度分布模拟[J]. 材料导报, 2020, 34(20): 20015-20021.
MA Zhipeng, ZHANG Mingxuan, YU Haiyang, XU Zhiwu, YAN Jiuchun. Simulation of Vibration Intensity Distribution of SiC Ceramic Surface Under Ultrasonic. Materials Reports, 2020, 34(20): 20015-20021.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070004  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20015
1 Xiong H, Li H, Mao W, et al. Materials Letters, 2003, 57(22-23),3417.
2 Feng G J, Li Z R, Xu K, et al. Transactions of the China Welding Institution, 2014, 43(1), 1(in Chinese).
冯广杰, 李卓然, 徐慨, 等.焊接学报, 2014, 35(1), 13.
3 Li Z R, Xu X L, Liu W B, et al. Transactions of the China Welding Institution, 2012, 33(11), 9(in Chinese).
李卓然, 徐晓龙, 刘文波, 等.焊接学报, 2012, 33(11), 9.
4 Lv H, Chu J X, Kang Z J, et al. Materials Review, 2004, 18(1), 36(in Chinese).
吕宏, 楚建新, 康志君, 等. 材料导报, 2004, 18(1), 36.
5 Zeng Z, Shao W H, Hu B R, et al. Proceedings of the CSEE, 2017, 37(1), 221(in Chinese).
曾正, 邵伟华, 胡博容, 等. 中国电机工程学报, 2017, 37(1), 221.
6 Wang S G, Zhang Y. Chinese Journal of Nature, 2011, 33(1), 42(in Chinese).
王守国, 张岩. 自然杂志, 2011, 33(1), 42.
7 Han J C, Zhang Y M, He X D, et al. Journal of Astronautics, 2001, 22(6), 124(in Chinese).
韩杰才, 张宇民, 赫晓东, 等. 宇航学报, 2001, 22(6), 124.
8 Yu K Q, Cheng P, Ding G F, et al. Transducer and Microsystem Technologies, 2018, 37(12), 1(in Chinese).
余开庆, 程萍, 丁桂甫, 等.传感器与微系统, 2018, 37(12), 1.
9 Zakaulla M, Khan A R A. International Journal of Science and Enginee-ring Research, 2014, 5(3), 1070.
10 Piekoszewski J, Krajewski A, Prokert F, et al. Vacuum, 2003, 70(2), 307.
11 Sheng Z, Wladyslaw W, Binshi X, et al. China Surface Engineering, 1998, 11(4), 5(in Chinese).
Sheng Z, Wladyslaw W, Binshi X, 等. 中国表面工程, 1998, 11(4), 5.
12 Boadi J K, Yano T, Iseki T, et al. Journal of Material Science, 1987, 22(7), 2431.
13 Yano T, Suematsu H, Iseki T, et al. Journal of Materials Science, 1988, 23(9), 3362.
14 Chen B, Wu S B, Xiong H P, et al. Transactions of the China Welding Institution, 2016, 37(4), 47(in Chinese).
陈波, 吴世彪, 熊华平, 等.焊接学报, 2016, 37(4), 47.
15 Yan J C, Yang C L, Liu H J, et al. Journal of Mechanical Engineering, 2015, 51(24), 41(in Chinese).
闫久春, 杨春利, 刘会杰, 等. 机械工程学报, 2015, 51(24), 41.
16 Chen X, Yan J, Ren S, et al. Materials Letters, 2013, 105(a1), 120.
17 Yan J C, Sun X L. Welding & Joining, 2009(3), 6(in Chinese).
闫久春, 孙小磊. 焊接, 2009(3), 6.
18 Zhang Y, Yan J C, Wu Q, et al. Materials Science and Technology, 2009, 25(3), 379.
19 Khalid M H, Naka M. Trans JWRI, 2002, 31(2), 177.
20 Khalid M H, Naka M. Trans JWRI, 2003, 32(2), 309.
21 Naka M, Hafez K M. Journal of Materials Science, 2003, 38(16), 3491.
22 Han J C, Zhang Y M, He X D, et al. Astronaut, 2001, 22(6), 124.
23 Iwamoto C, Tanaka S. Acta Materialia, 1998, 46(7), 2381.
[1] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[2] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[3] 薛海涛, 魏鑫, 郭卫兵, 张新宇. 活性元素Al对超声波钎焊Mo接头组织和力学性能的影响规律[J]. 材料导报, 2020, 34(20): 20103-20106.
[4] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[5] 彭和, Chen Daolun, 蒋显全, 白雪飞. 金属材料超声波点焊研究进展[J]. 材料导报, 2020, 34(11): 11064-11070.
[6] 肖乾坤, 朱政强, 李铭锋. 紫铜超声波焊接微观结构演变及再结晶研究[J]. 材料导报, 2020, 34(10): 10157-10161.
[7] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[8] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[9] 桑健, 王波, 朱训明, 张洪涛, 王云峰, 金伟, 高丙路, 常青, 何鹏. T2铜箔热辅助超声波增材制造工艺[J]. 材料导报, 2018, 32(18): 3199-3207.
[10] 于长新,王发刚,尹凯俐,纪文义,刘新超,魏春城. 弱界面层方向性对层状ZrB2-SiC/石墨陶瓷的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2047-2050.
[11] 祁帅, 黄国强. 超声波辅助二元溶剂剥离制备石墨烯*[J]. CLDB, 2017, 31(9): 72-76.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed