Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 20080251-9    https://doi.org/10.11896/cldb.20080251
  金属与金属基复合材料 |
摩擦接触表面温度测量技术研究进展
杨现臣, 李新梅
新疆大学机械工程学院,乌鲁木齐 830000
Research Progress on Temperature Measurement Technology of Friction Contact Surfaces
YANG Xianchen, LI Xinmei
School of Mechanical Engineering, Xinjiang University, Urumqi 830000, China
下载:  全 文 ( PDF ) ( 11499KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 摩擦表面温升影响着材料表面物理、化学、力学性能,导致关键零部件加速失效,因此掌握摩擦接触表面温度信息对于材料摩擦特性、磨损机制研究及实际工程应用意义重大。目前研究者已结合粗糙表面微接触混合弹塑性理论、分形理论建立了多种接触模型,用于不同工况环境下的接触面热力学分布及闪温的计算。但摩擦温度取决于载荷、速度、环境、摩擦副材料等多种因素,接触面微凸体的不规则分布、滑动过程中接触特性以及材料参数的动态变化使理论计算的发展受到阻碍。近年来,测量技术的发展使研究者可更进一步掌握磨面温度信息。本文总结、梳理了适用于摩擦接触表面测温的多种技术,包括:常用的传统热电偶、红外辐射测温技术,新型的超声波测温、可摩擦式热电偶及薄膜热电偶测温技术,用于事后检测的金相结构法、氪化法等测温技术。介绍了这些测温技术的基本原理,综述了各技术在摩擦接触表面温度测量的研究现状及适用范围。分析讨论了目前各技术在摩擦界面测温中存在的问题及优劣势,最后提出了摩擦接触表面测温技术存在的挑战并对其未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨现臣
李新梅
关键词:  温度测量  闪点温度  热电偶  超声波测温    
Abstract: The temperature rise of friction surface affects the physical, chemical and mechanical properties of material surface, which leads to accelerated failure of key components. Therefore, temperature information of friction contact surface is of great significance for research of friction characteristics, wear mechanism and practical engineering application. At present, researchers have established a variety of contact models based on the mixed elastoplastic theory and fractal theory on rough surface, which can be used to calculate the thermodynamic distribution and flash temperature under different working conditions. However, the friction temperature depends on load, speed, environment and friction pair materials and other factors. Furthermore, the irregular distribution of asperities and dynamic changes of contact characteristics hinder the development of theoretical analysis. With the development of measurement technology, researchers have a better understanding of the friction surface temperature. In this paper, a variety of temperature measurement technologies of friction contact surface are summarized, including traditional methods like thermocouple and infrared radiation, new methods such as ultrasonic technology, grindable thermocouple and thin film thermocouple, and methods for post detection like metallographic structure and kryptonization. The research status and application scope of each technology are illuminated. The problems, advantages and disadvantages of the current technologies in the temperature measurement of the friction surface are discussed. Meanwhile, the challenges of temperature measurement technology of friction contact surface are put forward and the future development direction is prospected.
Key words:  temperature measurement    flash temperature    thermocouple    ultrasonic temperature measurement
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TG115  
基金资助: 国家自然科学基金(51865055);新疆自治区天山英才计划资助项目(201720025)
通讯作者:  lxmxj@126.com   
作者简介:  杨现臣,本科、硕士均毕业于新疆大学机械工程学院材料加工工程专业,现为新疆大学机械工程学院博士研究生,在李新梅教授的指导下进行研究,目前主要研究方向为干滑动摩擦磨损。
李新梅,教授,博士研究生导师,本科毕业于辽宁工程技术大学热加工工艺及设备专业,硕士毕业于西安理工大学材料科学与工程专业,2007年博士毕业于西安交通大学材料科学与工程专业,长期从事于材料表面改性技术、材料磨损腐蚀及防护领域的研究工作,获授权国家发明专利2项,发表论文50余篇。
引用本文:    
杨现臣, 李新梅. 摩擦接触表面温度测量技术研究进展[J]. 材料导报, 2022, 36(12): 20080251-9.
YANG Xianchen, LI Xinmei. Research Progress on Temperature Measurement Technology of Friction Contact Surfaces. Materials Reports, 2022, 36(12): 20080251-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080251  或          http://www.mater-rep.com/CN/Y2022/V36/I12/20080251
1 Wang J G, Dai Y J, Hong Y F, et al. Journal of Harbin Institute of Technology, 2020, 52(1), 8 (in Chinese).
汪久根, 戴雨静, 洪玉芳, 等.哈尔滨工业大学学报, 2020, 52(1), 8.
2 Kennedy F E. Journal of Tribology, 1982, 104(4), 582.
3 Iiyuk. Thin-layer tribology, China Machine Press, China, 1980 (in Chinese ).
伊留克. 薄层摩擦学, 机械工业出版社, 1980.
4 Kennedy F E. Wear, 1984, 100(1-3), 453.
5 Yagi K, Kyogoku K, Nakahara T. Tribology Transactions, 2006, 49(4), 482.
6 Tian X, Kennedy F E. Journal of Tribology,1994,116( 1), 167.
7 Carslaw H S, Jaeger J C. The Mathematical Gazette, 1959, 36(316), 142.
8 Ashby M F,Abulawi J, Kong H S. Tribology Transactions,1991,34(4), 577.
9 Smith E H, Aranell R D. Tribology Letters, 2013, 52(3),407.
10 Liu Y W, Ye F H, Li H Y, et al. Journal of Vibration and Shock, 2019,38(22),178(in Chinese ).
刘雨薇, 叶福浩, 李和言,等.振动与冲击,2019,38(22),178.
11 Jaeger J C. Proceedings of the Royal Society, 1942, 76, 202
12 Archard J F. Wear, 1959, 2(6), 438.
13 Komanduri R, Hou Z B. Tribology International,2001, 34(3), 145.
14 Liu Z Q, Huang C Z, Wan Y, et al. Tool Engineering, 2002(3), 3(in Chinese ).
刘战强,黄传真,万熠,等.工具技术, 2002(3),3.
15 Bhushan B. Modern Tribology Handbook, CRC Press, American, 2001, pp.60.
16 Shankar V K, Kunar B M, Murthy C S, et al. Friction, 2020,8(6), 1073.
17 Yuan C H. Multi-scale simulation and experimental study of thermal effect of metal friction. Master's Thesis, Harbin Institute of Technology,China,2017(in Chinese).
袁晨昊. 金属摩擦热效应的多尺度模拟及实验研究.硕士学位论文, 哈尔滨工业大学,2017.
18 Newcomb T P. Proceedings of the Institution of Mechanical Engineers Automobile Division, 1958,12(7), 227.
19 Stephenson D A. Journal of Engineering for Industry, 1993, 115 (4), 432.
20 Pang J, Wu C, Wang Q, et al. International Journal of Advanced Manufacturing Technology, 2018, 97, 25.
21 Chen R Y. Metal cutting principles, China Machine Press, China, 2002(in Chinese ).
陈日曜.金属切削原理,机械工业出版社,2002.
22 Lu J Z, Sun J N. Metal cutting principles and tools, China Machine Press, China, 2011(in Chinese ).
陆剑中,孙家宁.金属切削原理与刀具,机械工业出版社,2011.
23 Cai G Q, Zheng H W. Journal of Northeastern University, 1985(4), 74(in Chinese).
蔡光起,郑焕文.东北工学院学报,1985(4),74.
24 Wu Y P, Shi Z H, Li X Z, et al. Journal of Anhui University of Technology,1988(2),182(in Chinese ).
吴一平,施占华,李熙章,等.安徽工学院学报,1988(2),182.
25 Nosko O, Nagamine T, Nosko A L, et al. Tribology International, 2015, 88,100.
26 Bendersky D. Mechanical Engineering Machine, 1953, 75(2),117.
27 Lei J F, Martin L C, Will H A. In:ASME 1997 International gas turbine and aeroengine congress and exhibition. Florida, 1997, pp.1.
28 Wrbanek J D, Fralick G C. In: International Instrumentation Symposium. Cleveland, 2006, pp. 214395.
29 Chen Y Z. Research on fabrication of thin film thermocouples on nickel base superalloy and related technology. Master's Thesis, University of electronic Science and Technology, China, 2014(in Chinese ).
陈寅之. 在镍基高温合金上制备薄膜热电偶及其相关技术研究. 硕士学位论文,电子科技大学,2014.
30 方钢, 陈曦.中国专利, CN2013105290222. 2013.
31 Tian X, Kennedy F E, Deacutis J J, et al. Journal of Tribology-Transactions of the ASME, 1992, 35(3), 167.
32 Kennedy F E, Frusescu D, Jiaying L. Wear,1997,207(1), 46.
33 Chang X, Chen W Y. China Mechanical Engineering, 1995(S1),120(in Chinese ).
常兴, 陈五一.中国机械工程,1995(S1),120.
34 Yao Y L, Dai J, Huang C F. Aeronautical Manufacturing Technology,2015(12), 103(in Chinese ).
姚艳玲,代军,黄春峰.航空制造技术,2015(12),103.
35 Xu X,Yang X X. Applied Technology,2012,62, 1674.
36 Modest M F. International Journal of Heat & Mass Transfer,2003,12 (10), 1331.
37 Wang C, Gou X K, Duan Y, et al. Journal of Infrared and Millimeter Waves, 2018, 37(4), 501 (in Chinese).
王超, 苟学科, 段英, 等. 红外与毫米波学报, 2018, 37(4), 501.
38 Wang K H. Practical technology of temperature measurement, China Machine Press, China, 2007(in Chinese ).
王魁汉.温度测量实用技术, 机械工业出版社,2007.
39 Wieleba W. Wear, 2005,258(5),870
40 Wang Y, Yan M F, Xu J J, et al. In: Proceedings of the First National Youth Tribology Conference.Beijing, 1991,pp.13(in Chinese ).
王铀,闫牧夫, 徐景俊, 等. 第一届全国青年摩擦学学术会议论文集. 北京, 1991, pp.13.
41 Wei W. The model of sliding friction temperature field and it's application. Master's Thesis, Hefei University of Technology, China, 2016 (in Chinese).
魏巍. 滑动摩擦副温度场模型研究及应用. 硕士学位论文, 合肥工业大学, 2016.
42 Yu J W, Cheng Q, Wei W, et al. Lubrication Engineering, 2013, 38(4), 1.
俞建卫, 程清, 魏巍, 等. 润滑与密封, 2013, 38(4),1.
43 Li Q L. Research on the frictional temperature field of face-to -face contact based on the measurement of the interface. Master's Thesis, Hefei University of Technology, China, 2009 (in Chinese).
李奇亮. 基于界面测温的面接触摩擦温度场研究. 硕士学位论文, 合肥工业大学, 2009.
44 Wang L F. The research of spherical plain bearing friction temperature fieldbased on infrared measurement.Master's Thesis, Hefei University of Technology, China, 2015 (in Chinese).
王礼飞. 基于红外测温方法的关节轴承摩擦温度场研究. 硕士学位论文, 合肥工业大学, 2015.
45 Xing D M. Research on the frictional temperature field of copper-based bearing materials based on backstepping heat flow method. Master's Thesis, Hefei University of Technology, China, 2012 (in Chinese).
邢大淼. 基于反推热流法的铜基轴承材料端面摩擦温度场研究.硕士学位论文, 合肥工业大学, 2012.
46 Rowe K G, Bennett A I, Krick B A, et al. Tribology International, 2013, 62, 208.
47 Quinn T F, Winer W O. Elsevier, 1985, 102(1-2), 67.
48 Shi Y A, Wei D, H B, et al. Journal of Nondestructive Evaluation, 2020, 139(2), 48.
49 Xu L, Wang G, Lyu G Y, et al. Journal of Test and Measurement Technology, 2019, 33(2), 178 (in Chinese).
许琳, 王高, 吕国义, 等. 测试技术学报, 2019, 33(2), 178.
50 Lynnworth L C, Carnevale E H. Temperature Measurement and Control, 1972, 1(4), 715.
51 Balasubramaniam K, Shan V V, Costley R D, et al. Review of Scientific Instruments, 1999, 70(12), 46.
52 Ihara I, Tomomatsu T. Iop Conference, 2011, 18(2), 022008.
53 Aoki S, Ihara I. Mechanical Engineering Journal, 2015, 2(1), 431.
54 Ihara I, Aoki S. International Journal on Smart sensing and Intelligent Systems, 2020, 7(5), 1.
55 Silva M B D, Wallbank J. Journal of Materials Processing Technology, 1999, 88(1-3), 195.
56 Wu Y P, Shi Z H. Journal of Anhui Institute of Technology,1988(2), 175 (in Chinese).
吴一平, 施占华.安徽工学院学报, 1988(2), 175.
57 Wright P K, Trent E M. Journal of the Iron and Steel Institute, 1973, 211, 364.
58 Wright P K. Engineering for Industry, 1978, 100(2), 131.
59 Huang X T, Huang L G. Lubricatio Engineering, 1985(1), 12 (in Chinese).
黄湘泰, 黄林根. 润滑与密封, 1985(1), 12.
60 Fang H, Zhang G D. Materials for Mechanical Engineering, 1998(5), 3 (in Chinese).
方浩, 张国定. 机械工程材料, 1998(5), 3.
61 Li Y, Yin G M. Aeroengine, 2017, 43(3), 83 (in Chinese).
李杨, 殷光明. 航空发动机, 2017, 43(3), 83.
62 Zhang J Y, Qin Y, Qiu J H, et al. China Coatings, 2020, 35(4), 45 (in Chinese).
张建英, 秦颖, 邱家浩, 等. 中国涂料, 2020, 35(4), 45.
63 Chi Y, Jhih R, Tong M. Journal of Mechanics, 2020, 36(4), 15.
64 Yu M, Osamu K. International Journal of Heat and Mass Transfer, 2020, 153,119567.
65 Zhu A C, Gao C H, Huang J M. Machinery, 2005(11), 62 (in Chinese).
主安成, 高诚辉, 黄健萌. 机械制造, 2005(11), 62.
66 Ding H D, Han W Z, Xie F K, et al. China Surface Engineering, 1999(1), 3 (in Chinese).
丁华东, 韩文政, 谢凤宽, 等. 中国表面工程, 1999(1), 3.
[1] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[2] 武靖伟, 张忠科, 车朋卫. 钎料Zn对钛/铝搅拌摩擦钎焊接头组织和性能的影响[J]. 材料导报, 2019, 33(18): 3067-3071.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed