Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 21010211-5    https://doi.org/10.11896/cldb.21010211
  无机非金属及其复合材料 |
超声波辅助氧化改性钙基吸收剂的制备及性能研究
任智翔1, 杨康1,2,3, 李肽脂1, 迂晨1, 詹华1, 吴锋1,2,3, 李辉1,2,3
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 陕西省生态水泥混凝土工程技术研究中心,西安 710055
3 教育部生态水泥工程研究中心,西安 710055
Preparation of Ultrasonic Impregnated Oxidized Calcium-based Absorbent and Its Desulfurization and Denitrification Properties
REN Zhixiang1, YANG Kang1,2,3, LI Taizhi1, YU Chen1, ZHAN Hua1, WU Feng1,2,3, LI Hui1,2,3
1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Shaanxi Ecological Cement Concrete Engineering Research Center, Xi'an 710055, China
3 Ecological Cement Engineering Research Center of Ministry of Education, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 4578KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过超声波辅助溶液浸渍的方法,将K2S2O8、Ca(ClO)2、(NH4)4Ce(SO4)4及K2Cr2O7等氧化剂分别浸渍在钙基吸收剂表面,形成具有氧化性的活性位点,即氧化位点,改善钙基吸收剂脱除NOx的效果。通过正交实验,在不同超声波功率、浸渍时间和浸渍温度下,按照一定掺杂比例,利用氧化剂对钙基吸收剂进行化学调质。将改性后钙基吸收剂在固定床反应器上进行了同时脱硫脱硝实验,选择污染物的平均脱除率作为评价指标。正交实验结果表明:以Ca(ClO)2作为氧化剂进行超声波浸渍改性效果最好,最优改性工艺参数为氧化剂掺杂比例20%(质量分数,下同)、超声波功率100%、浸渍时间1.5 h、浸渍温度70 ℃。同时,基于晶相结构(XRD)分析和扫描电镜(SEM)显微形貌观测,可知超声波辅助氧化改性的方法能有效改善钙基吸收剂表面形貌,表面上形成了氧化位点,该氧化位点不仅能够增大吸收剂与SO2和NOx的接触,还能促进NO氧化为NO2,进一步提高SO2和NOx的脱除率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任智翔
杨康
李肽脂
迂晨
詹华
吴锋
李辉
关键词:  钙基吸收剂  超声波浸渍  氧化  脱硫脱硝  化学调质    
Abstract: In this work, the oxidants such as K2S2O8, Ca(ClO)2, (NH4)4Ce(SO4)4 and K2Cr2O7 were impregnated on the surface of calcium-based absorbent by ultrasonic-assisted solution impregnation method, and the active sites with oxidation were formed to improve the effect of cal-cium-based absorbent on NOx removal. Through orthogonal experiment, under different ultrasonic power, impregnation time and impregnation temperature, the calcium-based absorbent was chemically modified by oxidant according to a certain doping ratio. The simultaneous desulfurization and denitrification experiments of modified calcium-based absorbent were carried out in a fixed bed reactor, and the average removal rate of pollutants was selected as the evaluation index. The orthogonal experiment results showed that Ca(ClO)2 was the best oxidant for ultrasonic impregnation modification. The optimal modification process parameters were as follows: the oxidant doping ratio of 20%, the ultrasonic power of 100%, the impregnation time of 1.5 h, and the impregnation temperature of 70 ℃. At the same time, based on the crystal structure (XRD) analysis and scanning electron microscopy (SEM), it can be seen that the ultrasonic-assisted oxidation modification method can effectively improve the surface morphology of calcium-based absorbent, and the oxidation sites are formed on the surface. On the one hand, it can increase the contact between the absorbent and SO2 and NOx, on the other hand, it can promote the oxidation of NO to NO2, and further improve the removal rate of both.
Key words:  calcium-based absorbent    ultrasonic impregnation    oxidation    desulfurization and denitrification    chemical conditioning
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TB332  
基金资助: 陕西省教育厅 2020 年度重点科学研究计划(协同创新中心项目)(20JY041);清远市科技计划项目(2020KJJH040)
通讯作者:  sunshineli@vip.sina.com21010211-1   
作者简介:  任智翔,2018年6月毕业于青岛理工大学,获得工科学士学位。于2018年9月至今在西安建筑科技大学进行硕士阶段学习,主要从事烟气多污染物协同控制领域的研究。李辉,西安建筑科技大学材料科学与工程学院院长,教授。从1997年6月至今,担任西安建筑科技大学材料科学与工程学院材料科学与工程专业、资源循环科学与工程专业教师,先后任助教、讲师、副教授、教授。她所带领的废弃物资源化利用与生态材料低碳制备团队致力于资源化利用固体废弃物制备新型生态胶凝材料、混凝土材料新技术和新工艺,以及生态环境保护与修复新技术和新工艺等方面的研发与推广工作。目前主持国家重大专项课题1项,国家自然科学基金项目3项,其他省部级课题多项。获国家科技进步二等奖1项,陕西省科学技术一等奖2项,获准授权发明专利13项,发表研究论文150余篇。
引用本文:    
任智翔, 杨康, 李肽脂, 迂晨, 詹华, 吴锋, 李辉. 超声波辅助氧化改性钙基吸收剂的制备及性能研究[J]. 材料导报, 2022, 36(2): 21010211-5.
REN Zhixiang, YANG Kang, LI Taizhi, YU Chen, ZHAN Hua, WU Feng, LI Hui. Preparation of Ultrasonic Impregnated Oxidized Calcium-based Absorbent and Its Desulfurization and Denitrification Properties. Materials Reports, 2022, 36(2): 21010211-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010211  或          http://www.mater-rep.com/CN/Y2022/V36/I2/21010211
1 Pang Z T, Huang S Q, Song Y J, et al.Modern Chemical Industry, 2019, 39(1),56.
2 Wang X, Lei Y, Yan L, et al. Science of the Total Environment, 2019, 676,18.
3 Ning Lin.Low Carbon World, 2018(9), 96(in Chinese).
宁琳.低碳世界, 2018(9), 96.
4 Chen Liang, Zhao Fan, Yan Guangjing, et al.Journal of Chemical Engineering, 2018, 69(9),103 (in Chinese).
陈亮, 赵帆, 闫广精, 等.化工学报, 2018, 69(9),103.
5 Feldman J M, Lo C, Hendrickx J.Anesthesia and Analgesia, 2020, 130(2),374.
6 Nie Q, Hu W, Huang B, et al.Journal of Hazardous Materials, 2019, 369,503.
7 Yang Zhongkai, Wu Ning, He Ruyi, et al.Application of Chemical Industry, 2020,49(5), 1219 (in Chinese).
杨忠凯,武宁,何如意,等.应用化工, 2020, 49(5),1219.
8 Mukiza E, Zhang L L, Liu X M.International Journal of Minerals, 2020, 27(4),555.
9 Fan B G, Jia L, Han F, et al.Journal of Material Cycles and Waste Management, 2019, 21(5),1211.
10 Hu Yueqi, Guo Jianhui, Kong Chuan, et al.Journal of Ecological Environment, 2018, 27(9), 1706 (in Chinese).
胡月琪,郭建辉,孔川,等.生态环境学报, 2018, 27(9), 1706.
11 Han Linkai, Gao Lingyu, Yang Lina, et al.Fine Petrochemical, 2019(5), 50 (in Chinese).
韩林凯, 高玲玉, 杨丽娜,等.精细石油化工, 2019(5),50.
12 Zhang Hu, Tong Huiling, Wang Jinyuan, et al.Journal of Chemical Engineering, 2007, 58(7), 1810 (in Chinese).
张虎, 佟会玲, 王晋元,等.化工学报, 2007, 58(7),1810.
13 Kuruc M.Advances in Science and Technology-Research Journal, 2020, 14(2),140.
14 Shi Lu, Zhang Jie, Chen Rong. Materials Reports A:Review Papers, 2019,33(7) , 64 (in Chinese).
施露, 张杰, 陈蓉.材料导报:综述篇, 2019, 33(7),64.
15 Cui Jinyang, Wang Qiang, Gong Baoju, et al.Journal of Yangtze University of Science, 2019, 36(4), 102 (in Chinese).
崔进杨, 王强, 宫保聚,等.长江科学院院报, 2019, 36(4),102.
16 Huang Huiyang, Cao Zubin, Han Dongyun, et al.Journal of Liaoning Petrochemical University, 2020, 40(3), 14 (in Chinese).
黄惠阳,曹祖斌,韩冬云,等.辽宁石油化工大学学报, 2020, 40(3),14.
17 Song C, Lyu J, Yang H, et al. Proceedings of the Chinese Society of Electrical Engineering, 2018, 38(2),338.
18 Zhao Junyou, Liu Chongning, He Qingqiang, et al.Petroleum and Natural Gas Chemical Industry, 2017, 46 (4), 1 (in Chinese).
赵军友,刘崇宁,贺庆强,等.石油与天然气化工, 2017, 46(4),1.
19 Yu Qinghang.Coal Chemical Industry, 2020(4), 39 (in Chinese).
于清航.煤化工, 2020(4),39.
20 Guo Xiaoya, Nian Yuegang, Yan Haihong, et al.Journal of Environmental Engineering Technology, 2017, 7 (1), 7 (in Chinese).
郭晓娅,年跃刚,闫海红,等.环境工程技术学报, 2017, 7(1), 7.
21 Cheng G, Zhang C. Polish Journal of Environmental Studies, 2018, 27(2),481.
22 Ma Yingjie.Editorial Journal, 2020, 32(2), 60 (in Chinese).
马迎杰.编辑学报, 2020, 32(2),60.
23 Patel A , Patel A .Catalysis Letters, 2019, 149(6),1476.
24 Ren Xiaoli, Zhang Weijiang, Yang Baoqiang, et al.Journal of Environmental Engineering, 2007, 1(6), 87 (in Chinese).
任晓莉, 张卫江, 杨宝强,等.环境工程学报, 2007, 1(6),87.
25 Wang Gaixian. Preparation and cyclic absorption properties of calcium-based CO2 absorbent. Ph.D. Thesis, Zhengzhou University, China, 2014 (in Chinese).
王改线. 钙基CO2吸收剂的制备及循环吸收性能研究.博士学位论文, 郑州大学, 2014.
[1] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[2] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[3] 朱烨森, 刘梁, 徐云泽, 王晓娜, 刘刚, 黄一. 溶液pH和温度对X65管线钢焊缝非均匀腐蚀的影响[J]. 材料导报, 2022, 36(1): 20090152-7.
[4] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[5] 王小玉. 四氧化三钴纳米材料制备路线的研究进展[J]. 材料导报, 2021, 35(z2): 64-67.
[6] 周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
[7] 孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
[8] 杨泽波, 辜振睿, 王海龙. 离子掺杂对钙质膨胀剂熟料性能的影响[J]. 材料导报, 2021, 35(z2): 259-261.
[9] 李金祺, 陈艺文, 裴玉冰, 王天剑, 聂丽萍. 汽轮机高温叶片用马氏体耐热钢服役氧化行为研究[J]. 材料导报, 2021, 35(z2): 395-398.
[10] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[11] 侯鹏程, 王永亮, 韩志东, 王春锋. 聚碳硅烷协效氢氧化镁阻燃聚乙烯复合材料的残炭结构演变[J]. 材料导报, 2021, 35(z2): 525-528.
[12] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[13] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[14] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[15] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed