Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10023-10028    https://doi.org/10.11896/cldb.20040062
  无机非金属及其复合材料 |
羰基铁粉/FeSiBCCr复合非晶磁粉芯的性能
池强1,2, 谢磊1, 常良2, 李强1, 董亚强2
1 新疆大学物理科学与技术学院,乌鲁木齐 830046
2 中国科学院磁性材料与器件重点实验室,浙江省磁性材料及其应用技术重点实验室,中国科学院宁波材料技术与工程研究所,宁波 315201
Study on the Properties of Carbonyl Iron Powder/FeSiBCCr Composite Amorphous Magnetic Powder Core
CHI Qiang1,2, XIE Lei1, CHANG Liang2, LI Qiang1, DONG Yaqiang2
1 School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
2 Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
下载:  全 文 ( PDF ) ( 4083KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着5G时代的到来,数量庞大的基站建设对低损耗、高频特性、大功率软磁复合磁粉芯的需求不断增长,同时,宽禁带半导体技术的迅速发展对电子器件的小型化、高频化、高功率密度提出了更高的要求。然而,几乎没有软磁材料能够满足第三代宽禁带半导体的外源环境要求,这进一步制约了下一代电子器件的发展。为了满足发展需求,本工作通过将具有高饱和磁化强度(Ms)的羰基铁粉(Carbonyl iron powder, CIP)与水雾化FeSiBCCr微细非晶粉末复合,成功制备了综合软磁性能优异的FeSiBCCr复合非晶磁粉芯。研究结果表明,与没有复合CIP的FeSiBCCr非晶磁粉芯相比,当CIP含量为20%(质量分数,下同)时,FeSiBCCr复合非晶磁粉芯的Ms提高到160 emu/g左右,整体提高约6.7%;在100 Oe外加直流场下,FeSiBCCr复合非晶磁粉芯的直流偏置性能达到72%,提高了10.8%;在0.05 T@100 kHz条件下,FeSiBCCr复合非晶磁粉芯的损耗降低至296 mW/cm3,整体降低11.6%;FeSiBCCr复合非晶磁粉芯的有效磁导率和品质因数分别提高到47.0和174,提高了14.6%和9.4%。通过复合不同含量的CIP制备的新型FeSiBCCr复合非晶磁粉芯具有高的饱和磁化强度、低的损耗和良好的直流偏置特性,有望满足高频大电流器件的需要,在高频电磁系统中具有良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
池强
谢磊
常良
李强
董亚强
关键词:  复合非晶磁粉芯  羰基铁粉  饱和磁化强度  损耗  直流偏置性能    
Abstract: With the advent of the 5G era, the construction of a large number of base stations has an increasing demand for low loss, high frequency characteristics and high-power soft magnetic composite magnetic powder core. Meanwhile, the rapid development of wide band-gap semiconductor technology has put forward higher requirements for the miniaturization, high-frequency and high power density of electronic devices. However, few soft magnetic materials can meet the external environment requirements of third-generation wide band-gap semiconductors, which further restricts the development of next-generation electronic devices. In order to meet the development requirements, FeSiBCCr composite amorphous magnetic powder cores with excellent comprehensive soft magnetic properties were successfully prepared by compounding water-atomized FeSiBCCr fine amorphous powder with carbonyl iron powder (CIP) with high saturation magnetization (Ms). The results show that, compared with FeSiBCCr amorphous magnetic powder cores without composite CIP, Ms of FeSiBCCr composite amorphous magnetic powder cores increase to about 160 emu/g when the CIP content is 20% (mass fraction, the same below), and the overall improvement is about 6.7%. Under 100 Oe external DC field, the DC-bias performance of FeSiBCCr composite amorphous magnetic cores reaches 72%, which is improved by 10.8%. Under the condition of 0.05 T@100 kHz, the coer loss of FeSiBCCr composite amorphous magnetic powder core is reduced to 296 mW/cm3, and the overall decrease is 11.6%. The effective permeability and quality factor of FeSiBCCr composite amorphous magnetic powder cores are increased to 47.0 and 174, respectively, by 14.6% and 9.4%. The new FeSiBCCr composite amorphous magnetic powder cores with the different filling contents of CIP exhibit high Ms, low core loss and good DC-bias characteristics, which are expected to meet the needs of high-frequency and high-current devices, and thus have a good application prospect in high-frequency electromagnetic systems.
Key words:  composite amorphous magnetic powder cores    carbonyl iron powder    saturation magnetization    core loss    DC-bias performance
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TB331  
  TB31  
基金资助: 国家自然科学基金(51601205;51771161);宁波市“科技创新2025”重大专项(2018B10031);宁波市奉化区重大科技专项(20194FHQ010015)
通讯作者:  qli@xju.edu.cn;dongyq@nimte.ac.cn   
作者简介:  池强,2017年6月毕业于太原科技大学,获得工学学士学位。现为新疆大学物理科学与技术学院硕士研究生,并在中国科学院宁波材料技术与工程研究所作课题生,在李强教授和董亚强高级工程师的指导下进行研究。目前主要研究领域为非晶纳米晶软磁粉芯。
李强,新疆大学教授,博士研究生导师。2002年香港中文大学博士毕业,2005年在新疆大学任教至今,其中2011—2012年在韩国庆北国立大学作博士后。在国内外学术期刊上发表学术论文50余篇,其团队主要研究方向包括:过渡族金属基块体金属玻璃磁热效应的研究;制备冷速对Fe基块体非晶态合金性能的影响;不添加玻璃化形成元素块体非晶合金的制备及性能表征;通过亚稳液相分离机制制备块体磁性纳米合金;铁基磁性块体非晶态合金的制备及性能表征。主持国家自然科学基金科研项目5项。获2017年度自治区科技进步二等奖一项,排名第一。已培养博士1名、硕士40余名、本科生百余名。
董亚强,中国科学院宁波材料技术与工程研究所高级工程师,硕士研究生导师。在国际知名学术期刊上发表SCI论文50余篇,申报国家发明专利24项,其中6项已授权。主要研究方向包括:微细金属粉末制备技术;非晶纳米晶软磁复合材料的制备及应用;非晶纳米晶软磁材料的开发及应用。作为项目负责人,主持国家自然科学基金青年基金、中科院科技网络服务计划项目(STS项目)、宁波市科技创新2025重大专项和宁波市自然科学基金等项目。已共同培养硕士研究生10余名。
引用本文:    
池强, 谢磊, 常良, 李强, 董亚强. 羰基铁粉/FeSiBCCr复合非晶磁粉芯的性能[J]. 材料导报, 2021, 35(10): 10023-10028.
CHI Qiang, XIE Lei, CHANG Liang, LI Qiang, DONG Yaqiang. Study on the Properties of Carbonyl Iron Powder/FeSiBCCr Composite Amorphous Magnetic Powder Core. Materials Reports, 2021, 35(10): 10023-10028.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040062  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10023
1 Taghvaei H, Shokrollahi H, Janghorban K, et al. Materials & Design, 2009, 30, 3989.
2 Shokrollahi H, Janghorban K. Journal of Magnetism and Magnetic Mate-rials, 2007, 317, 61.
3 Taghvaei A H, Shokrollahi H, Janghorban K. Materials & Design, 2010, 31, 142.
4 Zeng Z Y, Li Y M, He H, et al. Materials Science & Engineering of Powder Metallurgy, 2011, 16, 124.
5 Pošković E, Ferraris L, Franchini F, et al. AIP Advance, 2019, 9, 035224.
6 Xie X X, Lyu J W, Jin Z W, et al.Thermal Spray Technology, 2014, 6(4), 71 (in Chinese).
谢旭霞, 吕建伟, 金兆伟, 等. 热喷涂技术, 2014, 6(4), 71.
7 Cui Y F, Zhou J, Xiao Y D, et al.Materials Reports A:Review Papers, 2010, 24 (1), 27 (in Chinese).
崔永飞, 周娟, 肖于德, 等. 材料导报:综述篇, 2010, 24 (1), 27.
8 Li X T, Zhou S X, Kuang C J, et al.Materials Reports, 2018, 32(S2), 122 (in Chinese).
李现涛, 周少雄, 况春江, 等. 材料导报, 2018, 32(专辑32), 122.
9 Zhou B, Chi Q, Dong Y Q, et al. Journal of Magnetism and Magnetic Materials, 2020, 494, 165827.
10 Wang X Y, Lu C W, Guo F, et al. Journal of Magnetism and Magnetic Materials, 2012, 324, 2727.
11 Wang A D, Zhao C L, Men H, et al. Journal of Alloys and Compounds, 2015, 630, 209.
12 Wang F, Inoue A, Han Y, et al. Journal of Alloys and Compounds, 2017, 723, 376.
13 Dong C, Inoue A, Wang X H, et al. Journal of Non-Crystalline Solids, 2018, 500, 173.
14 Wang F, Inoue A, Han Y, et al. Journal of Alloys and Compounds, 2017, 711, 132.
15 Chang L, Zhang Y Q, Dong Y Q, et al. SN Applied Sciences, 2019, 1, 902.
16 Chang C T, Guo J J, Li Q, et al. Journal of Alloys and Compounds, 2019, 788, 1177.
17 Zhang Y Q, Chi Q, Chang L, et al. Journal of Magnetism and Magnetic Materials, 2020, 507, 166840.
18 Périgo E A, Nakahara S, Pittini-Yamada Y, et al. Journal of Magnetism and Magnetic Materials, 2011, 323, 1938.
19 Chen S F, Chen C Y, Cheng C S. Journal of Alloys and Compounds, 2015, 644, 17.
20 Shokrollahi H, Janghorban K. Materials Science and Engineering: B, 2006, 134, 41.
21 Suzuki T, Sharma P, Jiang L, et al. IEEE Transactions on Magnetics, 2018, 54, 2801705.
22 Li T Y, Ding W T, Geng W B, et al.Materials Reports, 2018, 32(S1), 124 (in Chinese).
李天应, 丁文涛, 耿文斌, 等. 材料导报, 2018, 32(专辑31), 124.
23 Li W C, Cai H W, Kang Y, et al. Acta Materialia, 2019, 167, 267.
24 Schubert D W, Werner S, Hahn I, et al. Composites Science and Techno-logy, 2019, 177, 26.
25 Bai R R, Zhu Z H, Zhao H, et al. Journal of Magnetism and Magnetic Materials, 2017, 433, 285.
26 Wang R W, Liu J, Wang Z, et al. Journal of Non-Crystalline Solids, 2012, 358, 200.
27 Manivel R M, Ponpandian N, Majumdar B, et al. Materials Science and Engineering A, 2001, 304, 1062.
28 Shen T D, Harms U, Schwarz R B. Journal of Metastable and Nanocrystalline Materials, 2002, 13, 441.
29 Li Q D, Guo J Y, Hu J, et al.Materials Reports B:Research Papers, 2017, 31(8), 26(in Chinese).
李庆达, 郭建永, 胡军, 等. 材料导报:研究篇, 2017, 31(8), 26.
30 Liu D, Chen X P, Ying Y, et al. Ceramics International, 2016, 42, 9152.
31 Li T, Dong Y Q, Liu L, et al. Intermetallics, 2018, 102, 101.
[1] 曹敏, 邓雨希, 全鹏, 徐康, 杨喜, 李贤军. 木基多孔炭/铁氧体复合吸波材料的制备与性能表征[J]. 材料导报, 2021, 35(10): 10029-10035.
[2] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[3] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[4] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[5] 胡志德, 赵湖钧, 王大伟. 羰基铁粉对锂基磁流变脂动态流变行为的影响[J]. 材料导报, 2019, 33(Z2): 630-633.
[6] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[7] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[8] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[9] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[10] 胡晶, 谢国治, 顾家新, 谌静, 谭鑫, 王瑞, 邢贝贝. 多元助剂改性羰基铁粉雷达波低频吸波性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 520-524.
[11] 解帅, 冀志江, 水中和, 侯国艳, 李彬, 王静. 三维织物石膏基微波吸收材料的制备及性能[J]. 材料导报, 2018, 32(18): 3123-3127.
[12] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
[13] 李玉超, 付雪连, 战艳虎, 谢倩, 葛祥才, 陶绪泉, 廖成竹, 卢周广. 高介电常数、低介电损耗聚合物复合电介质材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 18-23.
[14] 周健, 孟利, 杨富尧, 吴雪, 马光, 陈冷. 横磁处理对1K107纳米晶铁芯磁性能的影响及高频损耗分析*[J]. 《材料导报》期刊社, 2017, 31(14): 22-25.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed