Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10029-10035    https://doi.org/10.11896/cldb.20020009
  无机非金属及其复合材料 |
木基多孔炭/铁氧体复合吸波材料的制备与性能表征
曹敏, 邓雨希, 全鹏, 徐康, 杨喜, 李贤军
中南林业科技大学材料科学与工程学院,长沙 410004
Preparation and Characterization of Wood-based Porous Carbon/ Ferrite Composite Microwave Absorbing Materials
CAO Min, DENG Yuxi, QUAN Peng, XU Kang, YANG Xi, LI Xianjun
College of Materials Science and Engineering, Central South University of Forestry Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 6495KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以马尾松木材为原料,使用低温预处理、真空浸注和高温原位生长等手段制备了性能优异的木基多孔炭/铁氧体复合吸波材料(WPC/Fe3O4),采用XRD、XPS、SEM、VNA等技术对复合材料的物相、成分、形貌和电磁特性等进行表征分析,初步阐述了其吸波机理。结果表明:制备的WPC/Fe3O4具有优异的吸波性能,其反射损耗峰值达-35.6 dB,有效吸波频带宽超过5.6 GHz,并且在3~4.3 mm厚度范围内均可实现对全部Ku频段电磁波的有效吸收;WPC/Fe3O4具有规则通直的孔隙结构和丰富的异质界面,高温下Fe3O4纳米粒子均匀生长于木基多孔炭的孔隙和炭壁中;随着碳化温度的升高,WPC/Fe3O4的介电常数显著增大而磁导率变化较小;WPC/Fe3O4的电磁损耗机制主要为导电损耗、磁损耗和界面极化损耗。复合材料表现出对Ku频段电磁波的高效与宽频吸收,有望实现其在电子通讯或目标隐身等微波领域的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹敏
邓雨希
全鹏
徐康
杨喜
李贤军
关键词:  木基多孔炭  铁氧体  反射损耗  宽频吸波    
Abstract: In this paper, wood-based porous carbon/ferrite composite microwave absorbing materials (WPC/Fe3O4) with excellent properties were prepared by low-temperature pretreatment, vacuum impregnation and high-temperature in-situ growth using masson pine as raw materials. The phase, composition, morphology, and electromagnetic properties were investigated by XRD, XPS, SEM, and VNA. And the mechanism of its absorption was preliminarily explained. The results showed that the WPC/Fe3O4 has excellent absorption performance, with the peak reflection loss reaching -35.6 dB, the effective absorption band width exceeding 5.6 GHz, and the effective absorption of all Ku band electromagnetic waves within the thickness range of 3—4.3 mm. WPC/Fe3O4 has a regular straight pore structure and a rich heterogeneous interface. Fe3O4 nanoparticles grow uniformly in the pores and carbon walls of wood-based porous carbon at high temperatures. As the carbonization temperature increases, the dielectric constant of WPC/Fe3O4 increases significantly, but small change in permeability. The electromagnetic loss mechanisms of WPC/Fe3O4 are mainly conductive loss, magnetic loss and interfacial polarization loss. The composite materials show high efficiency of Ku band electromagnetic wave, which is expected to achieve its application in the microwave field such as electronic communication or target stealth.
Key words:  wood-based porous carbon    ferrite    reflection loss    broadband absorption
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TB34  
基金资助: 中南林科大人才启动基金(2018YJ033);湖南省教育厅科研项目(18B173)
通讯作者:  lxjmu@163.com;yangxijy@126.com   
作者简介:  曹敏,2018年6月毕业于中南林业科技大学,获工学学士学位。现为中南林业科技大学材料科学与工程学院硕士研究生,主要研究方向为生物质碳基功能材料。
李贤军,中南林业科技大学材料科学与工程学院教授,博士研究生导师。主要从事木竹资源高效利用等方面的研究,先后发表论文100余篇,获授权国家发明专利30余件。
杨喜,博士,2018年至今在中南林业科技大学工作。主要从事生物质碳基功能材料和竹木性能改良等方面的研究,在国内外学术期刊上发表论文近20篇。
引用本文:    
曹敏, 邓雨希, 全鹏, 徐康, 杨喜, 李贤军. 木基多孔炭/铁氧体复合吸波材料的制备与性能表征[J]. 材料导报, 2021, 35(10): 10029-10035.
CAO Min, DENG Yuxi, QUAN Peng, XU Kang, YANG Xi, LI Xianjun. Preparation and Characterization of Wood-based Porous Carbon/ Ferrite Composite Microwave Absorbing Materials. Materials Reports, 2021, 35(10): 10029-10035.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020009  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10029
1 Jiang H T, Ju A X, Xiao R P, et al.Safety & EMC, 2019(4),58(in Chinese).
姜浩田, 鞠艾洵, 肖润平, 等.安全与电磁兼容,2019(4),58.
2 Tang J, Bi S, Wang X, et al. Journal of Materials Science, 2019, 54(22), 13990.
3 Li Y W. Characterization of porous carbon fiber and Study on its microwave absorption as a filler for composite. Master's Thesis, Donghua University, China, 2014 (in Chinese).
李一伟. 多孔碳纤维的制备表征及其作为吸波剂的应用研究. 硕士学位论文, 东华大学, 2014.
4 Zhang K C, Gao X B, Zhang Q, et al.Journal of Sichuan Ordnance, 2019, 40(4), 46 (in Chinese).
张开创, 高欣宝, 张倩, 等.兵器装备工程学报, 2019, 40(4), 46.
5 Chen X G, Ye Y, Cheng J P.Journal of Inorganic Materials, 2011, 26(5), 449(in Chinese).
陈雪刚, 叶瑛, 程继鹏.无机材料学报, 2011, 26(5), 449.
6 Li J S, Xie Y Z, Lu W B, et al. Carbon, 2018, 129, 76.
7 Li J S, Huang H, Zhou Y J, et al. Journal of Materials Research, 2017, 32(7), 1213.
8 Ye W, Sun Q L, Zhang G Y. Ceramics International, 2019, 45(4), 5093.
9 Zhao H Q, Cheng Y, Liu W, et al. Nano-Micro Letters, 2019, 11(1),24.
10 Xi J B, Zhou E Z, Liu Y J, et al. Carbon, 2017, 124, 492.
11 Zhao H Q, Cheng Y, Lv H L,et al. ACS Sustainable Chemistry & Engineering, 2018, 6(11), 15850.
12 Wu Z C, Pei K, Xing L S, et al. Advanced Functional Materials, 2019, 29(28), 1901448.
13 Zou T C, Wu Y B, Li H P. Materials Letters, 2018, 214, 280.
14 Wang L, Wang Z, Ning G Y, et al.Materials Reports A:Review Papers, 2018, 32(7),2320 (in Chinese).
王丽, 王哲, 宁国艳, 等.材料导报:综述篇, 2018, 32(7),2320.
15 Liu X F, Cui X R, Chen Y X,et al. Carbon, 2015, 95, 870.
16 Zhang X J, Lv G C, Wang G S,et al. RSC Advances, 2015, 5, 55468.
17 Li X J, He L L, Li Y S. Surface & Coatings Technology, 2019, 360, 20.
18 Liu L Y, Shuang Y, Hu H Y, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(1), 1228.
19 Wang H G, Meng F B, Li J Y, et al.ACS Sustainable Chemistry & Engineering, 2018, 6(9), 11801.
20 Xi J B. Carbon-based materials for high-performance electromagnetic interference shielding and microwave absorption. Master's Thesis, Zhejiang University, China, 2018 (in Chinese).
席嘉彬. 高性能碳基电磁屏蔽及吸波材料的研究. 硕士学位论文, 浙江大学, 2018.
21 Cheng Y, Cao J, Li Y,et al. ACS Sustainable Chemistry & Engineering, 2018, 6(1), 1427.
22 Che R, Peng L M, Duan X,et al. Advanced Materials, 2004, 16(5), 401.
23 Ma F, Ma D, Wu G, et al.Chemical Communications, 2016, 52(40), 6673.
24 Wang D, Li F, Liu M,et al. Angewandte Chemie International Edition, 2008, 120(2), 379.
25 Zhao H Q, Cheng Y, Lv H L, et al. Carbon, 2019, 142, 245.
26 Wu C, Zeng Z Y, Liu X L, et al.Materials Science Forum, 2012, 512-515,1128.
27 Movassagh-Alanagh F, Khiabani Aidin B, Salimkhani H.Applied Surface Science, 2017, 420, 726.
28 Lv H, Liang X, Cheng Y, et al.ACS Applied Materials Interfaces, 2015, 7, 4744.
29 Yan X Y. Microwave absorbing honeycomb structure material calculation method of the equivalent electromagnetic parameters. Master's Thesis, University of Electronic Science and Technology of China, China, 2013 (in Chinese).
颜学源. 吸波蜂窝结构材料等效电磁参数的计算方法. 硕士学位论文, 电子科技大学, 2013.
30 Ohlan Anil, Singh Kuldeep, Chandra Amita.ACS Applied Materials Interfaces, 2010, 2, 927.
31 Wu Z, Tian K, Huang T, et al.ACS Applied Materials Interfaces, 2018,10(13), 11108.
32 Wang F, Sun Y, Li D, et al. Carbon, 2018, 134, 264.
33 Liao Y T. Study on the electro-magnetic parameter and microwave absorption properties of carbon nanotube composites. Master's Thesis, Guangdong University of Technology, China, 2016 (in Chinese).
廖宇涛. 碳纳米管复合材料的电磁参数与吸收电磁波性能的研究. 硕士学位论文, 广东工业大学, 2006.
34 Zhao B, Shao G, Fan B B, et al. Physical Chemistry Chemical Physics, 2015, 17, 2531.
[1] 李永波, 孙芳兵, 万晓霞, 段力峰, 丁笑晖, 黄成亮. 吸波涂料用磁性吸收剂研究进展[J]. 材料导报, 2020, 34(Z2): 71-73.
[2] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[3] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[4] 胡晶, 谢国治, 顾家新, 谌静, 谭鑫, 王瑞, 邢贝贝. 多元助剂改性羰基铁粉雷达波低频吸波性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 520-524.
[5] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[6] 解帅, 冀志江, 水中和, 侯国艳, 李彬, 王静. 三维织物石膏基微波吸收材料的制备及性能[J]. 材料导报, 2018, 32(18): 3123-3127.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed