Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15205-15211    https://doi.org/10.11896/cldb.20050074
  高分子与聚合物基复合材料 |
碳微/纳米纤维复合微波吸收材料的研究进展
魏玉鹏1,2, 朱俊志1, 蔺景鹏1, 申永前1,2, 江恬恬1, 李庆林1,2, 王海燕1,2, 喇培清1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州大学物理科学与技术学院,磁学与磁性材料教育部重点实验室,兰州 730000
Progress of Carbon Micro/Nanofiber Composite Materials for Microwave Absorption
WEI Yupeng1,2, ZHU Junzhi1, LIN Jingpeng1, SHEN Yongqian1,2, JIANG Tiantian1, LI Qinglin1,2, WANG Haiyan1,2, LA Peiqing1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 3845KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子信息技术的蓬勃发展,电磁干扰及电磁污染已成为亟须解决的问题,因此电磁波吸收材料引起研究人员的关注。铁基复合材料和陶瓷基复合材料作为传统吸波材料存在密度大、吸收性能差、吸收频宽窄等缺点,极大地限制了其在电磁波吸收领域的应用。碳基复合材料因具有密度低、电导率高等优点,在吸波材料中脱颖而出。其中石墨烯、碳纳米管复合材料呈现出优异的吸波性能,但石墨烯、碳纳米管的合成方法繁琐、制备成本高,严重阻碍了其工业化应用。
碳纤维具有可规模化生产、热稳定性高、分散性好的优势。碳纤维是一种电阻率相对低(<10-3 Ω·m)的介电损耗吸波材料。单一碳纤维因为介电常数高,不能直接用于吸波领域,所以对其进行改性,调控电磁特性,使其具有优异的电磁波吸收性能。近年来,颗粒、涂层改性碳纤维复合吸波材料的相关研究取得了一定的成果,但与石墨烯、碳纳米管复合材料相比,在吸波性能方面仍然有一定的差距。因此,需进一步提升碳纤维复合材料的吸波性能,研究工艺简单、低成本的制备方法,以利于工业化应用。
本文介绍了吸波材料的电磁波吸收理论,并综述了近年来碳纳米纤维、碳微米纤维、碳螺旋纤维复合材料的吸波机理和吸波性能的研究进展,对碳纤维复合吸波材料的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏玉鹏
朱俊志
蔺景鹏
申永前
江恬恬
李庆林
王海燕
喇培清
关键词:  吸波材料  碳纤维复合材料  微波吸收性能  电磁特性  阻抗匹配  衰减系数    
Abstract: The electromagnetic wave interference and pollution have become the significant problems with the rise of electronic technology. The microwave absorbing materials have caught the great interest of the researchers. The traditional absorbing materials, such as iron-based and ceramic-based composites, have some disadvantages such as high density, poor electromagnetic wave absorption performance and narrow absorption bandwidth. However, carbon-based composites have been recently found to be the excellent absorber due to its low density and high conductivity. For example, graphene and carbon nanotubes exhibit excellent electromagnetic wave absorption performance. Graphene and carbon nanotube composites are known to be one of the best microwave absorbing materials. However, the synthesis processes of graphene and carbon nanotube are complex and costly, hindering their industrial applicability.
Carbon fibers have the advantages of large-scale production, high thermal stability and good dispersion. Moreover, carbon fibers are the dielectric loss type absorbing material with the lower resistivity (<10-3 Ω·m). Single carbon fibers cannot be directly used as the microwave absorbing materials. Thus, it is modified to regulate electromagnetic properties and improve the electromagnetic wave absorption performance. In recent years, the electromagnetic wave absorption performance of the carbon fiber composites has been improved with the addition of particle and coa-ting. However, these modified carbon fibers still do not perform as good as carbon nanotube and graphene composites. Therefore, the electromagnetic wave absorption performance of carbon fiber composites should be further improved with the simple and low-cost synthesis method for the large-scale industrial application.
In this review, the theory of the electromagnetic wave absorption of the absorbing materials are introduced. Also, the recent research progresses of the carbon micro/nanofiber composites and the carbon spiral fiber composites in the absorption mechanism and properties are summarized. The development trend of the carbon fiber composites with the excellent electromagnetic wave absorption performance is prospected.
Key words:  absorbing materials    carbon fiber composites    microwave absorption performance    electromagnetic characteristic    impedance matching    attenuation coefficient
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  O469  
  TB332  
基金资助: 国家自然科学基金(51767016;51561021;51561020);甘肃省教育厅创新基金项目(2021A-030)
作者简介:  魏玉鹏,理学博士,兰州理工大学材料科学与工程学院,讲师。主要从事吸波材料方面研究。在国内外期刊发表文章10多篇。
引用本文:    
魏玉鹏, 朱俊志, 蔺景鹏, 申永前, 江恬恬, 李庆林, 王海燕, 喇培清. 碳微/纳米纤维复合微波吸收材料的研究进展[J]. 材料导报, 2021, 35(15): 15205-15211.
WEI Yupeng, ZHU Junzhi, LIN Jingpeng, SHEN Yongqian, JIANG Tiantian, LI Qinglin, WANG Haiyan, LA Peiqing. Progress of Carbon Micro/Nanofiber Composite Materials for Microwave Absorption. Materials Reports, 2021, 35(15): 15205-15211.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050074  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15205
1 Lan D, Qin M, Yang R S, et al. Journal of Colloid and Interface Science,2019,533,481.
2 Wang H, Wan L, Zhang J, et al. Materials Letters,2016,169,193.
3 Liu M, Xiang J, Wu Z P, et al. Chinese Journal of Inorganic Chemistry,2017,33(1),57.
4 Zeng S, Feng W, Peng S, et al. RSC Advances,2019,9(53),30685.
5 Wang J, Yu H Y, Yang Z T, et al. Carbon,2019,152,255.
6 Zhang Z L, Zhu Q H, Chen X Q, et al. Applied Physics Express,2019,12(1),011001.
7 Niu F X, Wang Y X, Ma L R, et al. Journal of Alloys and Compounds,2019,778,933.
8 Li N, Huan G W, Xiao H M, et al. Carbon,2019,144,216.
9 Li N, Huang G W, Li Y Q, et al. ACS Applied Materials and Interfaces,2017,9(3),2973.
10 Guo X Q, Bai Z Y, Zhao B, et al. Journal of Materials Science: Materials in Electronics,2016,27(8),8408.
11 Li Y J, Yuan M W, Liu H H, et al. Journal of Alloys and Compounds,2020,826,154147.
12 Chen W, Peng K, Wang J, et al. Materials Research Express,2020,6(12),126324.
13 Wang X, Jiang H T, Yang K Y, et al. Thin Solid Films,2019,674,97.
14 Liu Y, Chen Z, Xie W H, et al. ACS Sustainable Chemistry and Engineering,2019,7(5),5318.
15 Xu J L, Sun L, Qi X S, et al. Journal of Materials Chemistry C,2019,7(20),6152.
16 Zhang B, Wang J, Tan H Y, et al. Journal of Materials Science: Mate-rials in Electronics,2017,29(4),3348.
17 Pan H X, Yin X W, Xue J M, et al. Carbon,2016,107,36.
18 Liu T, Xie X B, Pang Y, et al. Journal of Materials Chemistry C,2016,4(8),1727.
19 Zeng J, Tian L L, Xue J, et al. Journal of Alloys and Compounds,2015,647,768.
20 Wu H J, Wu G L, Wu Q F, et al. Materials Characterization,2014,97,18.
21 Luo H, Zeng S F, Tan Y Q, et al. Journal of Materials Science: Materials in Electronics,2016,27(10),10435.
22 Lv J, Liang X H, Ji G B, et al. ACS Sustainable Chemistry and Enginee-ring,2018,6(6),7239.
23 Kshirsagar D E, Puri V, Dubey H, et al. Materials Today Communications,2017,13,23.
24 Shao Z C, Guo J, Liu P. Anti-Corrosion Methods and Materials,2016,63(4),256.
25 Estevez D, Qin F X, Quan L, et al. Carbon,2018,132,486.
26 Ma J N, Zhang X M, Liu W, et al. Journal of Materials Chemistry C,2016,4(48),11419.
27 Yang Q X, Yu L J, Dong Y B, et al. New Carbon Material,2019,34(5),455(in Chinese).
杨期鑫,俞璐军,董余兵,等.新型炭材料,2019,34(5),455.
28 Deng C, Zhang W K, Yang Y Q, et al. New Carbon Material,2019,34(2),170(in Chinese).
邓钏,张卫珂,杨艳青,等.新型炭材料,2019,34(2),170.
29 Li Q, Zhang Z, Qi L P, et al. Advanced Science,2019,6(8),1801057.
30 Lu S W, Yuan C J, Jia C X, et al. Functional Materials Letters,2016,9(3),1650035.
31 Ma D Y, Li X X, Guo Y X, et al. Materials Research Express,2018,5(1),016106.
32 Shen Z M, Zhao D L. New Carbon Material,2001, 16(1),1(in Chinese).
沈曾民,赵东林.新型炭材料,2001,16(1),1.
33 Guo L, An Q D, Xiao Z Y, et al. RSC Advances,2019,9(29),16690.
34 Xu X F, Shi S H, Wan G P, et al. Materials and Design,2019,183,108167.
35 Tong G X, Liu F T, Wu W H, et al. Journal of Materials Chemistry A,2014,2(20),7373.
36 Zhou W, Long L, Xiao P, et al. Ceramics International,2017,43(7),5628.
37 Sun X G. New Carbon Material,2007,22(4),375(in Chinese).
孙晓刚.新型炭材料,2007,22(4),375.
38 Shen Y Q, Wei Y P, Ma J Q, et al. Ceramics International,2020,46(9),13397.
39 Green M, Chen X. Journal of Materiomics,2019,5(4),503.
40 Xie S, Ji Z J, Zhu L C, et al. Journal of Building Engineering,2020,27,100963.
41 Wei Y P, Zhong K Y, Jiang T T, et al. Ceramics International,2020,46(8),11406.
42 Shen Y Q, Wei Y P, Ma J Q, et al. Ceramics International,2019,45(3),3313.
43 Shen Y Q, Wei Y P, Li J, et al. Journal of Materials Science: Materials in Electronics,2019,31(1),226.
44 Shen Y Q, Wei Y P, Li J, et al. Journal of Materials Science: Materials in Electronics,2019,30(4),3365.
45 Liu P J, Ng V M H, Yao Z J, et al. ACS Applied Materials and Interfaces,2017,9(19),16404.
46 Li H, Chen K B, Luo Y T, et al. Material Reports,2019,33(S2),73(in Chinese).
李贺,陈开斌,罗英涛,等.材料导报,2019,33(S2),73.
47 Song Z M, Liu X F, Sun X, et al. Carbon,2019,151,36.
48 Zhang T, Zhang J, Wen G W, et al. Carbon,2018,136,345.
49 He J K, Xu Z Q, Zhang J J, et al. China Rubber/Plastics Technology and Equipment,2014,40(16),8(in Chinese).
何俊宽,徐子钦,张佳佳,等.橡塑技术与装备,2014,40(16),8.
50 Zhang X X, Su X G, Zhang B, et al. Materials Research Express,2019,6(7),075005.
51 Huang B, Yue J L, Wei Y S, et al. Applied Surface Science,2019,483,98.
52 Zhen H W, Wang H G, Xu X L. Materials Letters,2019,249,210.
53 Wang J Q, Wu F, Yang Z T, et al. Nanotechnology,2020,31(22),225605.
54 Jiang Y L, Fu X Y, Tian R, et al. Journal of Materials Science,2020,55(14),5832.
55 Wang Y J, Sun Y, Zong Y, et al. Journal of Alloys and Compounds,2020,824,153980.
56 Huo Y S, Zhao K, Xu Z L, et al. Journal of Alloys and Compounds,2019,815,152458.
57 Guan G G, Zhang K Y, Gong L, et al. Journal of Alloys and Compounds,2020,814,152302.
58 Yu Q, Chen H L, Chen P, et al. Journal of Materials Science: Materials in Electronics,2016,28(3),2769.
59 Zhao S C, Yan L L, Tian X D, et al. Nano Research,2017,11(1),530.
60 Xiang J, Li J L, Zhang X H, et al. Journal of Materials Chemistry A,2014,2(40),16905.
61 Zuo X D, Xu P, Zhang C Y, et al. Ceramics International,2019,45(4),4474.
62 Li D R, Guo K, Wang F Y, et al. Journal of Alloys and Compounds,2019,800,294.
63 Gu W H, Lv J, Quan B, et al. Journal of Alloys and Compounds,2019,806,983.
64 Wei Y, Zhang L, Gong C H, et al. Journal of Alloys and Compounds,2018,735,1488.
65 Xiang J, Zhang X H, Ye Q, et al. Materials Research Bulletin,2014,60,589.
66 Zhang X K, Xiang J, Wu Z P, et al. Journal of Inorganic Materials,2017,32(12),1299.
67 Cui X Q, Liang X H, Chen J B, et al. Carbon,2020,156,49.
68 Liang X H, Quan B, Man Z M, et al. ACS Applied Materials and Interfaces,2019,11(33),30228.
69 Liu L, Zhou K C, He P G, et al. Materials Letters,2013,110,76.
70 Huang S S, Zhou W C, Wei P, et al. Physica Status Solidi A-Applications and Materials Science,2014,211(3),630.
71 Wan Y Z, Xiao J, Li C Z, et al. Journal of Magnetism and Magnetic Materials,2016,399,252.
72 Wan Y Z, Cui T, Xiao J, et al. Journal of Alloys and Compounds,2016,687,334.
73 Luo H L, Xiong G Y, Yang Z W, et al. Materials Research Bulletin,2014,53,123.
74 Wang L, He F, Wan Y Z. Journal of Alloys and Compounds,2011,509(14),4726.
75 Deng X Y, Qiang C W. International Journal of Materials Research,2013,104(2),157.
76 Yang Y, Zhang B S, Xu W D, et al. Journal of Alloys and Compounds,2004,365(1-2),300.
77 Ye M Q, Li Z T, Wang C, et al. Journal of Materials Engineering and Performance,2015,24(12),4825.
78 Zeng J, Xu J C. Journal of Alloys and Compounds,2010,493(1-2),L39.
79 Wang Y C, Wen Z L, Long L, et al. Journal of Materials Science: Materials in Electronics,2019,30(16),15075.
80 Xu Z C, Chen Y J, Li W, et al. RSC Advances,2018,8(32),17944.
81 Liu Y, Zhang Z Q, Xiao S T, et al. Applied Surface Science,2011,257(17),7678.
82 Qiang C W, Xu J C, Zhang Z Q, et al. Journal of Alloys and Compounds,2010,506(1),93.
83 Chen X L, Wang X W, Li L D, et al. Journal of Materials Science: Materials in Electronics,2016,27(6),5607.
84 Qiu J, Qiu T T. Carbon,2015,81,20.
85 Cao M S, Song W L, Hou Z L, et al. Carbon,2010,48(3),788.
86 Wei Y S, Yue J L, Tang X Z, et al. Applied Surface Science,2018,428,296.
87 Chai X, Zhu D M, Min D D, et al. Journal of Materials Science: Mate-rials in Electronics,2019,31(2),1442.
88 Zhang X K, Xiang J, Wu Z P, et al. Journal of Alloys and Compounds,2018,764,691.
89 Hou Z R, Xiang J, Zhang X K, et al. Journal of Materials Science: Materials in Electronics,2018,29(14),12258.
90 Quan B, Liang X H, Zhang X, et al. ACS Applied Materials and Interfaces,2018,10(48),41535.
91 Ye W, Sun Q L, Zhang G Y. Ceramics International,2019,45(4),5093.
92 Li W X, Qi H X, Guo F, et al. RSC Advances,2019,9(51),29959.
93 Li W X, Qi H X, Guo F, et al. Journal of Alloys and Compounds,2019,772,760.
94 Song Z M, Liu X F, Sun X, et al. Carbon,2019,151,36.
95 Ye W, Sun L, Yu J, et al. Journal of Textile Reaserch,2019,40(1),97(in Chinese).
叶伟,孙雷,余进,等.纺织学报,2019,40(1),97.
96 Wang J, Cheng B, Qiu H, et al. Journal of Electronic Materials,2018,47(9),5564.
97 Zhang X, Zhu W F, Zhang W D, et al. Journal of Materials Science: Materials in Electronics,2018,29(9),7194.
98 Raghubanshi H, Dikio E D, Naidoo E B. Journal of Industrial and Engineering Chemistry,2016,44,23.
99 Liu L, He P G, Zhou K C, et al. AIP Advances,2013,3(8),082112.
100 Zhao D L, Shen Z M, Chi W D. New Carbon Material,2001,16(2),66(in Chinese).
赵东林,沈曾民,迟伟东.新型炭材料,2001,16(2),66.
101 Xie S, Ji Z J, Li B, et al. Composite Part A,2018,114,360.
[1] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[2] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[3] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[4] 刘凡, 赵晓明. 聚噻吩及其衍生物PEDOT在吸波领域的应用现状[J]. 材料导报, 2020, 34(Z1): 507-510.
[5] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[6] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[7] 李贺, 陈开斌, 罗英涛, 孙丽贞, 杜娟. 纳米碳基复合吸波材料吸波机理及性能研究进展[J]. 材料导报, 2019, 33(Z2): 73-77.
[8] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[9] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[10] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[11] 李红, 刘旭升, 张宜生, JacekSenkara, 李光瀛, 马鸣图. 新能源电动汽车异种材料连接技术的挑战、趋势和进展[J]. 材料导报, 2019, 33(23): 3853-3861.
[12] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[13] 解帅, 冀志江, 水中和, 侯国艳, 李彬, 王静. 三维织物石膏基微波吸收材料的制备及性能[J]. 材料导报, 2018, 32(18): 3123-3127.
[14] 崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed