Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15197-15204    https://doi.org/10.11896/cldb.20040055
  高分子与聚合物基复合材料 |
熔融沉积纤维增强复合材料的研究进展
王智1,2, 于宁1, 黎静1
1 中国科学院重庆绿色智能技术研究院,重庆 400714
2 中国科学院大学,北京 100049
Research Progress in Fused Deposition Modeling of Fiber-reinforced Composites
WANG Zhi1,2, YU Ning1, LI Jing1
1 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 5052KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 熔融沉积增材制造属于热塑性聚合物材料3D打印成型技术之一,具有原料广泛、制造成本低、个性化可定制等特点。随着制备工艺和技术的优化,近年来成型质量不断提高。同时,这种基于分层打印、逐层堆积的材料成型方式导致其力学强度偏低。发展适用于熔融沉积技术的纤维增强热塑性聚合物复合材料,利用纤维具有高比强度、高比模量的特性,可显著提高熔融沉积热塑性聚合物成型件的抗拉强度和拉伸模量等力学性能。
然而,在熔融沉积纤维增强复合材料成型过程中,伴随着材料的流动与纤维取向、丝/层间结合、热量传导和残余应力等一系列复杂现象,明晰上述现象及其内在的关联性,是促进该技术应用和发展的关键。因此,近年来国内外研究者们主要从选择合适的纤维和优化制备工艺等方面不断尝试,并取得了丰硕的成果。
用于熔融沉积纤维增强复合材料的纤维主要以短纤维和连续纤维两大类材料为主。短纤维复合材料发展较早、制备工艺相对简单;连续纤维复合材料成型件的力学性能相对较高。近年来,国内外研究者基于纤维增强复合材料的制备工艺、材料性能、成型机理等关键要素,聚焦于纤维含量、沉积角度、打印速度、喷嘴温度、层厚和化学助剂添加等工艺参数变化对成型件力学性能影响的相关研究,拟充分发挥纤维增强材料的技术优势,为制备较高力学性能和较好质量打印成型件提供可能。
本文主要介绍了近年来国内外研究者在熔融沉积纤维增强复合材料方面的研究进展。从熔融沉积增材制造成型原理、纤维增强复合材料技术研究现状出发,介绍了短纤维和连续纤维增强复合材料的力学性能,以及工艺参数对增强复合材料力学性能的影响。最后,归纳了该技术仍存在的亟待解决的基础科学问题和关键技术问题,以及未来可能的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王智
于宁
黎静
关键词:  熔融沉积  纤维增强  复合材料    
Abstract: Fused deposition modeling (FDM) is a three-dimensional (3D) printing process that uses thermoplastic polymer feedstock. This technology can be used with a wide range of raw materials and provides the potential for customized or personalized manufacturing at low cost. Although the quality of FDM parts has been improved in recent years by continuous optimization of the preparation and printing processes, the products tend to have low mechanical strength owing to the layered nature of the components.
The use of fiber-reinforced composites with a thermoplastic matrix can improve the tensile strength and tensile modulus of FDM parts, owing to their high specific strength and high specific modulus. The mechanical properties of fiber-reinforced thermoplastic composites produced by FDM are dependent on a series of complex phenomena such as material flow, fiber orientation, filament/layer bonding, heat conduction, and residual stress. Analysis of the inherent correlation of the above phenomena is key to promoting the application and development of composite FDM technology. Therefore, many researchers have aimed to identify appropriate fiber reinforcement materials and optimize the preparation process in recent years.
Both short and continuous fibers are commonly used to form composite materials for the FDM technique. FDM with short fiber composites was developed first, as the preparation process is relatively simple. However, continuous fiber composites tend to have superior mechanical properties. Based on key factors such as the preparation process, material properties, and molding mechanism, researchers have focused on the in-fluence of process parameters such as fiber content, deposition angle, printing speed, nozzle temperature, layer thickness, and chemical additives on the mechanical properties of the molded fiber-reinforced composite parts. These studies provide the possibility of producing higher-quality 3D-printed and molded parts with superior mechanical properties by taking full advantage of fiber-reinforced materials.
This article reviews recent advances in FDM fiber reinforced composites. The mechanical properties of short fiber and continuous fiber-reinforced composites and the influence of process parameters on mechanical properties are introduced according to the FDM molding principle and the research status of FDM fiber-reinforced composite materials. In addition, the basic scientific problems and key technical problems that still need to be solved are summarized, and possible future research directions are indicated.
Key words:  fused deposition modeling    fiber-reinforced    composite
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  O631  
基金资助: 国家自然科学基金资助项目(51673198);中国科学院西部青年学者人才资助项目(Y62A400V10);中国科学院青年创新促进会项目
作者简介:  王智,2004年6月本科毕业于西北工业大学材料学院,获得工学学士学位。现为中国科学院重庆绿色智能技术研究院博士研究生,在黎静研究员的指导下进行研究。目前主要研究领域为熔融沉积3D打印关键技术。
于宁,中国科学院重庆绿色智能技术研究院助理研究员。2008年7月本科毕业于郑州大学材料科学与工程学院,2011年7月硕士毕业于郑州大学材料科学与工程学院,2015年12月博士毕业于法国洛林大学法国科学院反应过程国家重点实验室。2015年12月回国后,先后入选中国科学院西部青年学者、中国科学院青年创新促进会、重庆市创新创业优秀人才项目,主持各级项目6项。主要从事高分子复合材料增材制造的研究工作。近年来,在复合材料与增材制造领域发表多篇论文,包括Materials & Design、Macromolecules、Polymer、J. Phys. Chem. B、J. Phys. Chem. C等。
引用本文:    
王智, 于宁, 黎静. 熔融沉积纤维增强复合材料的研究进展[J]. 材料导报, 2021, 35(15): 15197-15204.
WANG Zhi, YU Ning, LI Jing. Research Progress in Fused Deposition Modeling of Fiber-reinforced Composites. Materials Reports, 2021, 35(15): 15197-15204.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040055  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15197
1 Liu Y Y, Liang G, Li Y,et al. Journal of Mechanical Engineering,2015,51(21),137(in Chinese).
刘媛媛,梁刚,李瑜,等.机械工程学报,2015,51(21),137.
2 Shi Y S, Lu Z L,Zhang W X, et al. China Surface Engineering,2006,19(5),150(in Chinese).
史玉升,鲁中良,章文献,等.中国表面工程,2006,19(5),150.
3 Carneiro O S, Silva A F, Gomes R, et al. Materials & Design,2015,83,768.
4 Kaveh M,Badrossamay M, Foroozmehr E. Journal of Materials Processing Technology,2015,226,280.
5 Yao X, Luan C, Zhang D, et al. Materials & Design,2017,114,424.
6 Skowyra J, Pietrzak K,Alhnan M A, et al. European Journal of Pharmaceutical Science,2015,68,11.
7 Mohamed O A, Masood S H,Bhowmik J L. Materials Letters,2017,193,58.
8 Chen S P, Yi H P, Luo Z H, et al. Materials Reports A: Review Papers,2016,30(4),54(in Chinese).
陈硕平,易和平,罗志虹,等.材料导报:综述篇,2016,30(4),54.
9 Zhao J, Zhuge X Q, Yu W H, et al. Materials Reports,2017,31(Z2),259(in Chinese).
赵俊,诸葛祥群,于文海,等.材料导报,2017,31(Z2),259.
10 Luo X, Zhang X, Zhu Y Y, et al. Materials Reports,2016,30(Z2),146(in Chinese).
罗希,张响,朱银宇,等.材料导报,2016,30(Z2),146.
11 Naghieh S, Karamooz M R, Badrossamay M, et al. Journal of the Mechanical Behavior of Biomedical Materials,2016,59,241.
12 Dawoud M, Taha I, Ebeid S J. Journal of Manufacturing Process,2016,21,39.
13 Nuñez P J, Rivas A, García P E, et al. Procedia Engineering,2015,132,856.
14 Riddick J C, Haile M A, Wahlde R V, et al. Additive Manufacturing,2016,11,49.
15 Christ S, Schnabel M, Vorndran E, et al. Materials Letters,2015,139,165.
16 Jiang J, Zhu L Y, Yang J F,et al. Machine Design and Manufacturing Engineering,2014,43(11),5(in Chinese).
姜杰,朱莉娅,杨建飞,等.机械设计与制造工程,2014,43(11),5.
17 Jin Z F, Jin Y F, Zhou M, et al. China Plastics Industry,2016,44(2),67(in Chinese).
金泽枫,金杨福,周密,等.塑料工业,2016,44(2),67.
18 Zhou H L, Zhao L Y, Li Y B, et al. Journal of Chongqing University of Technology (Natural Science),2017,31(11),74(in Chinese).
周桦林,赵利亚,李又兵,等.重庆理工大学学报(自然科学),2017,31(11),74.
19 Qiu Q Y, Xing S L, Xiao J Y, et al. Materials Reports,2006,20(Z2),436(in Chinese).
邱求元,邢素丽,肖加余,等.材料导报,2006,20(Z2),4369.
20 Love L J, Kunc V, Rios O, et al. Journal of Materials Research,2014,29(17),1893.
21 DeNardo N M. Additive manufacturing of carbon fiber-reinforced thermoplastic composites. Ph.D. Thesis, Purdue University, USA,2016.
22 Hassen A, Lindahl J, Chen X, et al.In: Society for the Advancement of Materials and Process Engineering. Long Beach, CA,2016.
23 Matsuzaki R, Ueda M, Namiki M, et al. Scientific Reports,2016,6,23058.
24 Bettini P, Alitta G, Sala G, et al. Journal of Materials Engineering and Performance,2016,26(2),1.
25 Kalsoom U, Nesterenko P N, Paull B. RSC Advances,2016,6(65),60355.
26 Wang X, Jiang M, Zhou Z, et al. Composites Part B: Engineering,2017,110,442.
27 Blok L, Longana M, Yu H, et al. Additive Manufacturing,2018,22,176.
28 Kan H T, Zhou H F. Anhui Science & Technology,2017(4),37(in Chinese).
阚海涛,周海峰.安徽科技,2017(4),37.
29 Ning F, Cong W, Qiu J, et al. Composites Part B: Engineering,2015,80,369.
30 Zhong W, Li F, Zhang Z, et al. Materials Science and Engineering: A,2001,301(2),125.
31 Xia Z F. Study on additive manufacturing of fiber reinforced thermo-plastic composites. Master’s Thesis, Harbin Institute of Technology, China,2017(in Chinese).
夏正付.纤维增强复合材料增材制造技术研究.硕士学位论文,哈尔滨工业大学,2017.
32 Ken-ichiro Mori, Tomoyoshi Maeno, Yuki Nakagawa. Procedia Enginee-ring,2014,81,1595.
33 Tekinalp H L, Kunc V, Velez-Garcia G.M, et al. Composites Science and Technology,2014,105,144.
34 Duty C, Kunc V, Love L J,et al. US patent, US20170057160,2017.
35 Duty C, Kunc V, Compton B, et al. Rapid Prototyping Journal,2017,23(1),181.
36 Shofner M L, Lozano K, Rodríguez-Macías F J, et al. Journal of Applied Polymer Science,2003,89(11),3081.
37 Shofner M L, Rodríguez-Macías F J, Vaidyanathan R K, et al. Composites Part A,2003,34(12),1207.
38 Perez A R T, David A R, Wicker R B. Journal of Failure Analysis and Prevention,2014,14(3),343.
39 Luiz F R T, Amatte I C, Dutra T A, et al. Composites Part B:Engineering,2017,124,88.
40 Mahajan C, Cormier D.In: Institute of Industrial and Systems Engineers (IISE).Tennessee,USA,2015,pp.2953.
41 Compton B G, Lewis J A. Advanced Materials,2014,26(34),5930.
42 Gardner J M, Sauti G, Kim J M, et al. In: Society for the Advancement of Materials and Process Engineering. Long Beach, CA,2016.
43 Kunc V.In: Proceedings of the 15th SPE Automotive Composites Confe-rence. Novi, MI, USA,2015,pp.9.
44 Hill C, Rowe K, Bedsole R, et al.In: Society for the Advancement of Materials and Process Engineering. Long Beach, CA,2016.
45 Yang C, Tian X, Liu T, et al. Rapid Prototyping Journal,2017,23(1),209.
46 Li N, Li Y, Liu S. Journal of Materials Processing Technology,2016,238,218.
47 Van Der Klift, Koga Y, Todoroki A, et al. Open Journal of Composite Materials,2016,6,18.
48 Dickson,Andrew N, Barry, et al. Additive Manufacturing,2017,16,146.
49 Melenka G W, Cheung B K O, Schofield J S, et al. Composites Structures,2016,153,866.
50 Tian W, Yu W H, Luo K, et al. Materials Reports,2018,32(S1),274(in Chinese).
田伟,于文海,罗鲲,等.材料导报,2018,32(专辑31),274.
51 Saari M, Cox B, Richer E, et al. 3D Printing & Additive Manufacturing,2015,2(1),32.
52 Espalin D, Muse D W, Macdonald E, et al. International Journal of Advanced Manufacturing Technology,2014,72(5-8),963.
53 Wang G F. Shape memory carbon fiber composites 3d printing technology. Master’s Thesis, Harbin Institute of Technology, China,2017(in Chinese).
王国峰.形状记忆碳纤维复合材料3D打印技术.硕士学位论文,哈尔滨工业大学,2017.
54 Brenken B, Barocio E, Favaloro A, et al. Additive Manufacturing,2018,21,1.
55 Turner B N, Strong R, Gold S A. Rapid Prototyping Journal,2014,20(3),192.
56 Blok L G, Longana M L, Yu H, et al. Additive Manufacturing,2018,22,176.
57 Sun Q, Rizvi G M, Bellehumeur C T, et al. Rapid Prototyping Journal,2008,14(2),72.
58 Tian X, Liu T, Yang C, et al. Composites Part A: Applied Science and Manufacturing,2016,88,198.
59 Mohamed O A, Masood S H, Bhowmik J L. Advances in Manufacturing,2015,1,44.
60 Ning F, Cong W, Hu Y, et al. Journal of Composite Materials,2016,51(4),451.
61 Zhang W, Wu A S, Sun J,et al. Composites Science and Technology,2017,150,102.
62 Zhao D X, Cai X, Shou G Z, et al. Key Engineering Materials,2015,667,250.
63 Zhang X, Chen L, Mulholland T, et al. Polymers for Advanced Technologies,2019,30,2122.
64 Zhu J, Zhang J, Wang J, et al. Polymer-Plastics Technology and Engineering,2018,57(15),1576.
65 Bi X J, Tian X Y, Zhang S, et al.Engineering plastics Application,2019,47(2),138(in Chinese).
毕向军,田小永,张帅,等.工程塑料应用,2019,47(2),138.
[1] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[2] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[3] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[6] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[7] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[8] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[9] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[10] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[11] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[12] 武海鹏. 复合材料层合板阻尼性能的预测与分析[J]. 材料导报, 2021, 35(Z1): 617-620.
[13] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[14] 谢贵堂, 张均, 姚明, 王宇川, 蒋国昌, 姜志国. 调湿材料的研究与应用现状[J]. 材料导报, 2021, 35(Z1): 634-638.
[15] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed