Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20120097-6    https://doi.org/10.11896/cldb.20120097
  高分子与聚合物基复合材料 |
耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能
段广宇1, 李玥1,*, 胡静文2, 胡祖明2, 于翔1, 迟长龙1
1 河南工程学院材料工程学院,郑州 450007
2 东华大学纤维材料改性国家重点实验室,上海 201620
Preparation and Properties of High-temperature Poly (metaphenylene isophthalamide) Dielectric Composites
DUAN Guangyu1, LI Yue1,*, HU Jingwen2, HU Zuming2, YU Xiang1, CHI Changlong1
1 College of Materials Engineering, Henan University of Engineering, Zhengzhou 450007, China
2 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 5097KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法以二氧化钛(TiO2)纳米粒子为原料合成了高长径比钛酸钡纳米线((BaTiO3 nanowires (BTN) );为了改善BTN与聚合物基体的相容性并保持BTN完整的化学结构,选择聚乙烯吡咯烷酮(PVP)作为改性剂,通过物理吸附作用将其包裹在BTN表面形成P-BTN纳米线;随后将P-BTN作为高介电常数填料加入到聚间苯二甲酰间苯二胺(PMIA)基体中制备出耐高温的PMIA介电复合材料。研究了P-BTN含量对PMIA复合材料介电性能、击穿强度的影响以及高温下P-BTN/PMIA复合材料介电性能的变化。结果表明:BTN经过PVP表面改性后,在P-BTN含量较高时依然可以均匀地分散在PMIA基体中,且与PMIA基体具有良好的相容性;随着P-BTN含量的增加,PMIA复合材料的介电常数提升明显;100 Hz时,含有15% (质量分数)P-BTN的PMIA复合材料的介电常数提升至18.5,相较于纯PMIA增加了7.4倍,同时介电损耗依然较低;在高温环境中(150~250 ℃),P-BTN/PMIA复合材料的介电性能稳定,没有出现明显波动,满足高温环境对材料介电性能的使用要求;此外,低含量P-BTN还可以改善PMIA介电复合材料的击穿强度,适用于更高电场强度环境中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段广宇
李玥
胡静文
胡祖明
于翔
迟长龙
关键词:  钛酸钡纳米线  聚间苯二甲酰间苯二胺  介电常数  介电损耗  高温    
Abstract: Barium titanate nanowires (BTN) with high aspect ratio were synthesized through a hydrothermal method by using titanium dioxide (TiO2) nanoparticles. In order to improve the compatibility between BTN and polymer matrix as well as maintain the completely chemical structure of BTN, Polyvinylpyrrolidone (PVP) was selected as modification that was wrapped on the surface of BTN by physical adsorption and the modified BTN nanowires were named as P-BTN. Subsequently, P-BTN were added into poly(metaphenylene isophthalamide) (PMIA) matrix to prepare PMIA dielectric composite. The dielectric property and breakdown strength of P-BTN/PMIA composite were investigated by varying the content of P-BTN nanoparticles; furthermore, effect of high temperature on dielectric properties of P-BTN/PMIA composites was also researched. The obtained consequences indicate that, due to effective modification of PVP on BTN, the prepared P-BTN are homogeneously dispersed in PMIA matrix even at relatively high P-BTN content, and the compatibility between BTN and PMIA matrix improves as well. With increasing content of P-BTN, the dielectric constant of P-BTN/PMIA composites obviously increases. For example, the dielectric constant of PMIA composite with 15wt% P-BTN increases to 18.5, which is 7.4 times that of pure PMIA, and the dielectric loss keeps at low value. It is worth noting that, even at high temperature (150—250 ℃), the dielectric properties of prepared P-BTN/PMIA composites are still stable, which can meet the requirements of high temperature for dielectric composites. In addition, the breakdown strength of PMIA composite can be enhanced at low content of P-BTN nanoparticles, which is suitable for application under highly electric field.
Key words:  barium titanate nanowires    poly(metaphenylene isophthalamide)    dielectric constant    dielectric loss    high temperature
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51608175);河南省高校科技创新人才计划(20HASTIT016);河南省科技攻关项目(202102310605)
通讯作者:  liyue0128@163.com   
作者简介:  段广宇,河南工程学院讲师。2020年6月毕业于东华大学,材料加工工程博士。主要研究领域包括高性能聚合物及其复合材料、高性能聚合物基介电材料。
李玥,河南工程学院副教授。2015年5月毕业于湖南大学,材料学博士。目前已发表专业论文30余篇,申请国家发明专利10余项,目前已授权6项。主要研究领域包括多种催化剂的制备、二维材料及器件、油水分离材料等。
引用本文:    
段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
DUAN Guangyu, LI Yue, HU Jingwen, HU Zuming, YU Xiang, CHI Changlong. Preparation and Properties of High-temperature Poly (metaphenylene isophthalamide) Dielectric Composites. Materials Reports, 2022, 36(4): 20120097-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120097  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20120097
1 Shen Y, Zhang X, Li M, et al. National Science Review,2017,4(1),23.
2 Prateek, Thakur V K, Gupta R K. Chemical Reviews,2016,116(7),4260.
3 Li Q, Yao F Z, Liu Y, et al. Annual Review of Materials Research, 2018, 48, 219.
4 Li H, Liu F H, Fan B, et al. Small Methods, 2018,2(6),1700399.
5 Zhu X T, Yang J, Dastan D, et al. Composites Part A-Applied Science and Manufacturing, 2019, 125, 105521.
6 Zhang X, Jiang J Y, Shen Z, et al. Advanced Materials, 2018, 30(16), 1707269.
7 Li Q, Liu F H, Yang T N, et al. Proceedings of the National Academy of Sciences, 2016, 113(36), 9995.
8 Kang D,Wang G Y,Huang Y H, et al. ACS Applied Materials & Interfaces, 2018, 10(4), 4077.
9 Luo S B, Yu J Y, Yu S H, et al. Advanced Energy Materials, 2019, 9(5), 1803204.
10 Liu S H, Zhai J W. Journal of Materials Chemistry A,2015,3(4),1511.
11 Wang Z D, Yang M M, Cheng Y H, et al. Composites Part A: Applied Science and Manufacturing, 2019, 118, 302.
12 Tang H X, Lin Y R, Sodano H A. Advanced Energy Materials, 2013, 3(4), 451.
13 Feng Y L, Li W F, Hou Y, et al. Journal of Materials Chemistry C, 2015, 3(6), 1250.
14 Huang X Y, Sun B, Zhu Y K, et al. Progress in Materials Science, 2019, 100, 187.
15 Joshi U A, Lee J S. Small, 2005, 1(12), 1172.
16 Duan G Y, Cao Y, Quan J Y, et al. Journal of Materials Science, 2020, 55(19), 8170.
17 Duan G Y, Wang Y, Yu J R, et al. Applied Nanoscience, 2019, 9(8), 1743.
18 Wang M, Li W L, Feng Y, et al. Ceramics International, 2015, 41(10), 13582.
19 Lv X G, Luo H, Chen S, et al. Mechanical Systems and Signal Proces-sing, 2018, 108, 48.
20 Chanmal V C. Express Polymer Letters, 2008, 4(4), 294.
21 Wang G Y, Huang X Y, Jiang P K. ACS Applied Materials & Interfaces, 2015, 7(32), 18017.
[1] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[2] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[3] 张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
[4] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[5] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[6] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[7] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[8] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[9] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[10] 赖旭平, 李天方, 刘瑞, 孙红亮. 元素Nb、Hf、Zr对γ-TiAl合金抗氧化性能的影响[J]. 材料导报, 2021, 35(Z1): 374-377.
[11] 唐紫苑, 张淑婷, 杜开平, 宣鹏举, 司丽娜. 包埋渗技术在镍基高温合金中的应用[J]. 材料导报, 2021, 35(Z1): 389-394.
[12] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[13] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[14] 陈光鹏, 张春涛. 泡沫灭火后Q460高强钢力学性能试验研究[J]. 材料导报, 2021, 35(6): 6151-6156.
[15] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed