Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6151-6156    https://doi.org/10.11896/cldb.19120050
  金属与金属基复合材料 |
泡沫灭火后Q460高强钢力学性能试验研究
陈光鹏1, 张春涛1,2
1 西南科技大学土木工程与建筑学院,绵阳 621010
2 工程材料与结构冲击振动四川省重点实验室,绵阳 621010
Experimental Study on Mechanical Properties of High Strength Q460 Steel After Foam Extinguishing
CHEN Guangpeng1, ZHANG Chuntao1,2
1 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
2 Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang 621010, China
下载:  全 文 ( PDF ) ( 5371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对室温及200~900 ℃高温自然冷却和泡沫灭火冷却后的Q460高强钢开展静力拉伸试验研究,获得高温及不同冷却方式后Q460高强钢的力学性能参数,并与Q235和Q690钢高温后力学性能变化规律进行对比分析,建立Q460高强钢力学性能参数随温度和冷却方式变化的数学模型。结果表明:Q460高强钢在不同温度和冷却方式下呈现不同的表观特征;温度和冷却方式对弹性模量的影响较小,却对Q460高强钢的强度和伸长率有较大影响,温度低于500 ℃时,Q460高强钢高温冷却后的强度和伸长率与常温时接近,但随温度的升高,强度降低而伸长率增大;温度高于500 ℃后,Q460高强钢自然冷却后的强度和伸长率发生明显变化,900 ℃时,Q460高强钢的屈服强度、极限强度和伸长率分别为常温时的38%、67%和107%;泡沫灭火冷却后Q460高强钢的力学性能参数发生明显变化的温度为600 ℃,900 ℃时Q460高强钢的屈服强度、极限强度和伸长率分别为常温时的39%、67%和131%。基于试验数据,建立了不同冷却方式下Q460高强钢的力学性能参数随温度变化的数学模型,可对火灾后Q460高强钢的力学性能进行有效评估。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈光鹏
张春涛
关键词:  Q460高强钢  高温  冷却方式  数学模型    
Abstract: High strength Q460 steel is extensively used in building construction due to its potential benefits over high strength and cost efficiency. Its performance in fire is very important to assess the extent of its fire damage and reusability. This paper presents the details of an experimental investigation on the post-fire mechanical properties of high strength Q460 steel after air and firefighting foam cooling. Tensile tests are performed on specimens exposed to elevated temperatures varying from 200 ℃ to 900 ℃ and then cooled down to room temperature in air or in extinguisher foam. The results from this investigation provided post-fire stress-strain curves, yield strengths, ultimate strength, elastic modulus, ultimate elongation and their residual factors. Systematic comparative analysis for the differences of mechanical properties of Q460, Q690 and Q235 steels are carried out. Significant differences are observed on the surface after exposing different high temperature and cooling in various media. The inf-luence of high temperature and cooling methods on elastic modulus is negligible, while sharp reduction is especially noted in the yield strength, ultimate strength and ultimate elongation. In addition, it is found that the loss of mechanical properties of Q460 steel is negligible for exposure tempe-rature up to 500 ℃ and cooling in air or in extinguisher foam. When exposed to 900 ℃, the yield strength, ultimate strength and ultimate elongation of high strength Q460 steel cooling in air are able to retain 38%, 67% and 107% of their ambient temperature capacity, whereas the yield strength, ultimate strength and ultimate elongation after foam extinguishing can retain 39%, 67% and 131% of their ambient temperature capacity. Finally, predictive equations are proposed for simple evaluation of post-fire material performance of Q460 steel. The results can be used to eva-luate the mechanical performance of Q460 steel structures after fire.
Key words:  high strength Q460 steel    high temperature    cooling method    mathematical models
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TU392.2  
基金资助: 国家自然科学基金(51508482); 全国大学生创新创业训练计划(S202010619026);西南科技大学研究生创新基金(20ycx0044)
通讯作者:  zhangchuntao1@126.com   
作者简介:  陈光鹏,2018年6月毕业于西南科技大学,获得工学学士学位。2018年9月至今在西南科技大学攻读硕士学位,主要从事工程结构、工程材料和工程力学方面的研究。
张春涛,西南科技大学,副教授。2012年12月博士毕业于重庆大学土木工程学院,主要从事结构工程、疲劳损伤和可靠度分析方面的研究,在国内外重要期刊发表文章50多篇,申报专利10余项。
引用本文:    
陈光鹏, 张春涛. 泡沫灭火后Q460高强钢力学性能试验研究[J]. 材料导报, 2021, 35(6): 6151-6156.
CHEN Guangpeng, ZHANG Chuntao. Experimental Study on Mechanical Properties of High Strength Q460 Steel After Foam Extinguishing. Materials Reports, 2021, 35(6): 6151-6156.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120050  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6151
1 Shi G,Ban H Y, Shi Y J, et al. Engineering Mechanics,2013,30(1),1(in Chinese).
施刚,班慧勇,石永久,等.工程力学,2013,30(1),1.
2 Luo Y F, Ren C C, Qiang X H, et al. Journal of Tianjin University(Science and Technology),2016,49(S1),104(in Chinese).
罗永峰,任楚超,强旭红,等.天津大学学报(自然科学与工程技术版),2016,49(S1),104.
3 Li G Q, Wang W Y. China Civil Engineering Journal,2017,50(12),1(in Chinese).
李国强,王卫永.土木工程学报,2017,50(12),1.
4 Wang W Y, Liu T Z. Journal of Building Materials,2016,19(1),171(in Chinese).
王卫永,刘天姿.建筑材料学报,2016,19(1),171.
5 Li G Q, Lv H B, Zhang C. Journal of Building Structures,2017,38(5),109(in Chinese).
李国强,吕慧宝,张超.建筑结构学报,2017,38(5),109.
6 Qiang X H, Wu N D, Jiang X, et al. Journal of Tongji University(Natural Science),2016,44(7),1076(in Chinese).
强旭红,武念铎,姜旭,等.同济大学学报(自然科学版),2016,44(7),1076.
7 Gao X F, Zhang X P, Liu H B, et al. Construction and Building Mate-rials,2018,165,82.
8 Wang Y L, Song K X, Zhang Y M, et al. Materials Science & Enginee-ring A,2019,746,127.
9 Metallic materials-tensile testing at elevated temperature: GB/T 4338-2006, Standards Press of China, 2006(in Chinese).
金属材料高温拉伸试验方法:GB/T 4338-2006,中国标准出版社,2006.
10 Li H T, Ben Y. Journal of Constructional Steel Research,2018,148,562.
11 Li G Q, Huang L, Zhang C. Journal of Tongji University(Natural Science),2018,46(2),170(in Chinese).
李国强,黄雷,张超.同济大学学报(自然科学版),2018,46(2),170.
12 Li Guoqiang, Huang Lei, Zhang Chao. Journal of Architecture and Civil Engineering,2018,35(3),1(in Chinese).
李国强,黄雷,张超.建筑科学与工程学报,2018,35(3),1.
13 Qiang X H, Wu K D, Jiang X, et al. Journal of Hunan University(Natural Science),2018,45(11),37(in Chinese).
强旭红,毋凯冬,姜旭,等.湖南大学学报(自然科学版),2018,45(11),37.
14 Zhang Y J, Zhu Y, Zhao S, et al. Structural Engineers,2009,25(5),104(in Chinese).
张有桔,朱跃,赵升,等.结构工程师,2009,25(5),104.
15 Ding F X, Yu Z W, Wen H L. Journal of Building Materials,2006,9(2),245(in Chinese).
丁发兴,余志武,温海林.建筑材料学报,2006,9(2),245.
[1] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[2] 曹成昊, 郭安然, 刘家臣, 张军军. 复合树脂/空心微珠耐高温浮力材料的制备及性能[J]. 材料导报, 2021, 35(2): 2185-2190.
[3] 田庆华, 邹艾玲, 童汇, 喻万景, 张佳峰, 郭学益. 废旧三元锂离子电池正极材料回收技术研究进展[J]. 材料导报, 2021, 35(1): 1011-1022.
[4] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[5] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[6] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[7] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[8] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[9] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[10] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[11] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[12] 李啸轩, 张强, 朱春城. 以g-C3N4为原料快速合成Ti2Al(C,N)陶瓷及其层状生长机制研究[J]. 材料导报, 2020, 34(4): 4032-4036.
[13] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[14] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[15] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed