Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21050233-10    https://doi.org/10.11896/cldb.21050233
  无机非金属及其复合材料 |
微波吸收复合材料体系及其计算机辅助设计的研究进展
王昕阳, 魏世丞, 梁义, 王玉江, 王博
陆军装甲兵学院装备保障与再制造系,北京 100072
Research Progress of Microwave Absorbing Composite Material System and Computer-aided Design
WANG Xinyang, WEI Shicheng, LIANG Yi, WANG Yujiang, WANG Bo
Department of Equipment Support and Remanufacturing, Army Armored Forces Academy, Beijing 100072, China
下载:  全 文 ( PDF ) ( 7050KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波吸收材料是指将投射至材料表面的电磁波能量转变为热能等其他类型的能量,从而实现电磁波的衰减和损耗的一类功能材料。随着抗磁干扰、辐射防护和军用隐身的现实需求不断增加,电磁波吸收材料不断向材料复合化、结构多样化的方向发展。并且随着信息技术的不断发展,以有限元分析、第一性原理计算为代表的材料计算科学,已广泛应用于微波吸收材料成分结构设计中,是实现材料可复合、可分析、可控制的重要手段。本文在综述阻抗匹配、电磁衰减等电磁波吸收基本原理与重要方程的基础上,论述了材料结构成分设计理论与计算机辅助方法,并根据研究现状对微波吸收复合材料进行分类,介绍了各体系复合材料的结构成分设计特点,分析了目前研究存在的问题,展望了未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王昕阳
魏世丞
梁义
王玉江
王博
关键词:  微波吸收  复合材料  吸波机理  材料设计  计算机辅助方法    
Abstract: Microwave absorbing material refers to aclass of functional material, which possesses the ability to convert the electromagnetic wave energy irradiating on their surface into other types of energy such as heat through certain kinds of physical actions, thereby realizing the attenuation and loss of electromagnetic waves. With the increasing demand for anti-magnetic interference, radiation protection, and military stealth, electromagnetic wave absorbing materials continue to develop towards component compositing and structure diversification. With the continuous development of information technology, material computing techniques represented by finite element analysis and first-principles calculations, have been widely used in the design of components and structures of microwave absorbing materials, which are the important means to realize compositing, analysis, and control of the materials. This paper clarifies the basic principles and important equations of electromagnetic wave absorption, such as impedance matching and electromagnetic attenuation, and reviews the design theory of material structure and component and computer-aided methods. According to the research status, microwave absorbing composite materials have been classified, and the structure and composition design features in multiple systems have been described. Finally, the conclusion analyzes the problems existing in current research, and prospects for the future development direction.
Key words:  microwave absorption    composite material    absorbing mechanism    material design    computer-aided method
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51905543);国防科技卓越青年科学基金(2017-JCJQ-ZQ-001)
通讯作者:  魏世丞,通信作者,陆军装甲兵学院装备保障与再制造系主任、教授、博士生导师,2003年东北大学冶金工程专业博士毕业,长期从事装备保障与再制造工程领域的教学科研工作。现为国家“万人计划”科技创新领军人才,入选国家创新人才特支计划、国家百千万人才工程,获“有突出贡献中青年专家”称号。作为首席科学家、项目负责人主持国家重点研发计划、国家自然科学基金优秀青年基金、两机专项等国家级项目37项。先后获国家科技进步二等奖1项、省部级科技进步一等奖7项。获中国科协“求是”奖、国务院政府特殊津贴。   
作者简介:  王昕阳,2018年6月、2020年12月于陆军装甲兵学院分别获得工学学士学位和硕士学位。现为陆军装甲兵学院装备保障与再制造系博士研究生,在魏世丞教授的指导下进行研究。目前主要研究领域为复合吸波材料。
引用本文:    
王昕阳, 魏世丞, 梁义, 王玉江, 王博. 微波吸收复合材料体系及其计算机辅助设计的研究进展[J]. 材料导报, 2023, 37(11): 21050233-10.
WANG Xinyang, WEI Shicheng, LIANG Yi, WANG Yujiang, WANG Bo. Research Progress of Microwave Absorbing Composite Material System and Computer-aided Design. Materials Reports, 2023, 37(11): 21050233-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050233  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21050233
1 Yang Z N, Liu F, Li C L, et al. Materials Reports, 2020, 34(7),7061(in Chinese).
杨振楠, 刘芳, 李朝龙, 等. 材料导报, 2020, 34(7),7061.
2 Mishra S P, Nath G, Mishra P. Materials Today: Proceedings, 2020,24,585.
3 Li Y B, Sun F B, Wan X X, et al. Materials Reports, 2020, 34(Z2),71(in Chinese).
李永波, 孙芳兵, 万晓霞, 等.材料导报, 2020, 34(Z2),71.
4 Meng F, Wang H, Huang F, et al. Composites Part B: Engineering, 2018,135,260.
5 Cao M, Yang J, Song W, et al. ACS Applied Materials&Interfaces, 2012, 4(12),6949.
6 Jin D, Wang H, Du Y G. Materials Reports, 2020, 34(24),154(in Chinese).
金丹, 王欢, 杜雨果. 材料导报, 2020, 34(24),154.
7 Cao M, Zhu J, Yuan J, et al. Materials & Design, 2002, 23(6),557.
8 Wang G P, Yu B M, Aori G L. Materials Reports, 2020, 34(20),163(in Chinese).
王桂平, 喻伯鸣, 敖日格勒. 材料导报, 2020, 34(20),163.
9 Huang W, Wei S, Wang Y, et al. Materials, 2019, 12(13),2206.
10 Wang L L, Song J, Liang J N, et al. Materials Reports, 2019, 33(3),131(in Chinese).
汪丽丽, 宋健, 梁加南, 等. 材料导报, 2019, 33(3),131.
11 Tang J S, Huang X M, Zhou W Z, et al. Journal of University of Electro-nic Science and Technology of China, 2008, 37(1),84(in Chinese).
唐晋生, 黄雪梅, 周伟中, 等.电子科技大学学报, 2008, 37(1),84.
12 Li Z, Zhao F, Wang J J, et al. Materials Reports, 2020, 34(14),14027(in Chinese).
李泽, 赵芳, 王建江, 等.材料导报, 2020, 34(14),14027.
13 Liu D L, Liu P A, Yang Q S, et al. Materials Reports, 2013(17),74(in Chinese).
刘丹莉, 刘平安, 杨青松, 等.材料导报, 2013(17),74.
14 Chy'lek P. Journal of the Optical Society of America, 1977, 67(4),561.
15 Jánossy L. Acta Physica Academiae Scientiarum Hungaricae, 1976, 41(1),41.
16 Wagner P E. Journal of Colloid & Interface Science, 1985, 105(2),456.
17 Gao Y, Gao X, Li J, et al. Composites Science and Technology, 2018, 158(4),175.
18 Fang R, Guo Z, Shi Y, et al. Journal of Alloys and Compounds, 2018,768,6.
19 Cao M, Jing Z, Jie Y, et al. Materials & Design, 2002, 23(6),557.
20 Shi G M, Zhang B, Wang X L, et al. Journal of Alloys & Compounds, 2016,655,130.
21 Huang W, Wei S, Wang Y, et al. Materials, 2019, 12(13),2206.
22 Zhao H, Fu Z, Chen H, et al. ACS Applied Materials & Interfaces, 2016, 12(13),2206.
23 Ali K, Iqbal J, Jan T, et al. Journal of Alloys and Compounds, 2017,705,559.
24 Yuan X, Cheng L, Zhang L. Journal of Alloys and Compounds, 2015, 622(15),282.
25 Hill R, Dissado L. Journal of Physics C: Solid State Physics, 1985, 18(19),3829.
26 Kondo K, Chiba T, Ando S, et al. IEEE Transactions on Magnetics, 2003, 39(5),3130.
27 Fang P H. Journal of Chemical Physics, 1965, 42(10),3411.
28 Wei H, Zhang Z, Hussain G, et al. Applied Materials Today, 2020,19,100596.
29 Lu Y. Journal of Shaanxi Normal University(Natural Science Edition), 2004(3), 66(in Chinese).
路莹.陕西师范大学学报(自然科学版), 2004(3), 66.
30 Zhao B Y. Preparation of Ti-doped barium ferrite absorbing materials and research on multi-resonance absorbing properties. Master's Thesis, Zhejiang University, China, 2014(in Chinese).
赵宝燕. Ti掺杂钡铁氧体吸波材料制备与多共振吸波性能研究. 硕士学位论文, 浙江大学, 2014.
31 Ma Z, Liu Q, Yuan J, et al. Physica Status Solidi (b), 2012, 249(3),575.
32 Snoek J L. Physica, 1948, 14(4),207.
33 Li N, Huang G W, Li Y, et al. ACS Applied Materials & Interfaces, 2017, 9(3),2973.
34 Li Y P, Su R H, Wang J J, et al. Electronic Components and Materials, 2020, 336(2), 70(in Chinese).
李玉鹏, 苏荣华, 王吉军, 等. 电子元件与材料, 2020, 336(2),70.
35 Kang S, Qiao S Y, Hu Z M, et al. Advances in Materials in China, 2020(1), 61(in Chinese).
康帅, 乔士亚, 胡祖明, 等. 中国材料进展, 2020(1), 61.
36 Ali K, Iqbal J, Jan T, et al. Journal of Alloys and Compounds, 2017,705,559.
37 Han R. Study on microwave absorption properties of easy-faced anisotropic magnetic powder composites. Ph.D. Thesis, Lanzhou University, China, 2013(in Chinese).
韩瑞. 易面各向异性磁粉复合材料微波吸收性能的研究. 博士学位论文, 兰州大学, 2013.
38 Zhang N. Study on electromagnetic properties mechanism of FeSiAl alloy micropowder composites. Ph.D. Thesis, University of Electronic Science and Technology of China, China, 2018(in Chinese).
张楠. FeSiAl系合金微粉复合材料电磁性能机理研究. 博士学位论文, 电子科技大学, 2018.
39 Ruppin R. Optics Communications, 2000, 182(4-6),273.
40 Zakri T, Laurent J P, Vauclin M. Journal of Physics D: Applied Physics, 1998, 31(13),1589.
41 Han X, Wang Y S. Journal of Aeronautical Materials, 2008, 28(4), 82(in Chinese).
韩笑, 王源升.航空材料学报, 2008, 28(4),82.
42 Zhao N, Zou T, Shi C, et al. Materials Science and Engineering B, 2006,127,207.
43 Park K Y, Han J H, Lee S B, et al. Composites Science & Technology, 2009, 69(7-8),1271.
44 Liu C H, Li Q W. Computer Simulation, 2008, 25(5),310(in Chinese).
刘翠红, 李庆武.计算机仿真, 2008, 25(5),310.
45 Shen J Y. Preparation and research of carbon nanotube film/magnetic metal nanowire absorber. Ph.D. Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
沈俊尧. 碳纳米管膜/磁性金属纳米线吸波材料制备与研究. 博士学位论文, 哈尔滨工业大学, 2019.
46 Wang H F, Xu Z W. Mechanical Science and Technology, 2008, 27(11),5(in Chinese).
王海风, 徐志伟. 机械科学与技术, 2008, 27(11),5.
47 Li Y T, Wang C Y, Du Z J, et al. Computer Simulation, 2011, 28(5),139(in Chinese).
黎炎图, 王超英, 杜作娟, 等.计算机仿真, 2011, 28(5),139.
48 Yang J J, Huang M, He W G, et al. Materials Reports, 2009(12),71(in Chinese).
杨晶晶, 黄铭, 何伟刚, 等.材料导报, 2009(12),71.
49 Zhu M Y, Chen Q, Tong W J, et al. Progress in Chemistry, 2017(11),1366(in Chinese).
朱脉勇, 陈齐, 童文杰, 等. 化学进展, 2017(11),1366.
50 Yang S, You W B, Qiu L C, et al. Science Bulletin, 2018(8),712(in Chinese).
杨盛, 游文彬, 裘立成, 等.科学通报, 2018(8),712.
51 Zhang S, Zheng W, Zhao Y, et al. Journal of Alloys & Compounds, 2017,694,309.
52 Kim S T, Kim S S. Journal of Applied Physics, 2014, 115,39.
53 Li Y S, Liu H Y. Acta Atomic and Molecular Physics, 2015(1),147(in Chinese).
李玉山, 刘红艳.原子与分子物理学报, 2015(1),147.
54 Bi Y, Chen D, Chen Z, et al. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2015,618,222.
55 Wang Y J, Huang W, Huang Y W, et al. Materials Reports, 2019, 33(10),1624(in Chinese).
王玉江, 黄威, 黄玉炜, 等. 材料导报, 2019, 33(10),1624.
56 Li Z Z, Wen L X, Shao L, et al. Journal of Controlled Release, 2004, 98(2),245.
57 Kim Y B, Yoon K S. Macromolecular Rapid Communications, 2010, 25(18),1643
58 Sumnakamura M, Katagiri K, Koumoto K. Journal of Colloid & Interface Science, 2010, 341(1),64.
59 Zhang X Y, Wang W Q, Guo B, et al. Materials Reports, 2019, 33(6),965(in Chinese).
张旭昀, 王文泉, 郭斌, 等.材料导报, 2019, 33(6),965.
21050233-960 Liu Q, Wang X Y, Huang Y B, et al. Materials Reports,2019,33(S1),392(in Chinese).
刘谦, 王昕阳, 黄燕滨, 等.材料导报,2019,33(S1),392.
61 Wang X, Liu Q, Huang Y, et al. Materials, 2020, 13(10), 2209.
62 Mulliken R S. Journal of Chemical Physics, 1932, 1(7),492.
63 Mead C A, Truhlar D G. Journal of Chemical Physics, 1979, 70(5),2284.
64 Barnett R, Landman U. Physical Review B Condensed Matter, 1993, 48(4),2081.
65 Slater J C, Koster G F. Physical Review, 1954, 94(6),1498.
66 Liu J. Preparation and electromagnetic properties of graphene/polyaniline composite absorber. Master's Thesis, Dalian University of Technology, China, 2017(in Chinese).
刘进. 石墨烯/聚苯胺复合吸波剂的制备及其电磁性能研究. 硕士学位论文, 大连理工大学, 2017.
67 Zhao P F. First-principles-based structure, magnetism and microwave absorption of cobalt-doped nano-cobalt manganese oxides. Master's Thesis, Fudan University, China, 2013(in Chinese).
赵朋飞. 钴掺杂的纳米钴锰氧化物基于第一性原理的结构、磁性、微波吸收的研究. 硕士学位论文, 复旦大学, 2013.
68 Zhao X C. Study on microwave absorption properties of graphene nanocomposites. Master's Thesis, Nanjing University, China, 2013(in Chinese).
赵星辰. 石墨烯纳米复合物的微波吸收性能研究. 硕士学位论文, 南京大学, 2013.
69 Fu M, Jiao Q, Zhao Y, et al. Journal of Materials Chemistry A, 2013, 2(3),735.
70 Zhang S, Qi Z, Zhao Y, et al. Journal of Alloys and Compounds, 2017, 694,309.
71 Qi W Q. Piezoelectric and Acousto-Optics, 2018, 40(4),633(in Chinese).
祁文青. 压电与声光, 2018, 40(4),633.
72 Nanni F, Travaglia P, Valentini M. Composites Science & Technology, 2009, 69(3-4),485.
73 Tian X, Meng F, Meng F, et al. ACS Applied Materials & Interfaces, 2017, 9(18), 15716.
74 Wang Y, Du Y, Wu B, et al. Polymers, 2018, 10(9),998.
75 Lyu H L. Electromagnetic attenuation and microwave absorption perfor-mance of cobalt-based ferrite. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2018(in Chinese).
吕华良. 钴基铁氧体的电磁衰减及其微波吸收性能研究. 博士学位论文, 南京航空航天大学, 2018.
76 Zhu Z, Sun X, Li G, et al. Journal of Magnetism & Magnetic Materials, 2015, 377(3),95.
77 Feng H X, Wang G, Chen J, et al. Progress in Chemical Industry, 2015(9),173(in Chinese).
冯辉霞, 王果, 陈姣, 等. 化工进展, 2015(9),173.
78 Yuan J, Yang H J, Hou Z L, et al. Powder Technology, 2013,237,309.
79 Qiao M, Lei X, Ma Y, et al. Chemical Engineering Journal, 2016, 304, 552.
80 Yang R B, Reddy P M, Chang C J, et al. Chemical Engineering Journal, 2016,285,497.
81 Green M, Liu Z, Peng X, et al. Light: Science & Applications, 2018, 7(1),87.
82 Dou Y K, Li J B, Fang X Y, et al. Applied Physics Letters, 2014, 104(5),112906.
83 Liang T X, Zhao H S, Zhang Y, et al. Journal of Inorganic Materials, 2006(3), 659(in Chinese).
梁彤祥, 赵宏生, 张岳, 等.无机材料学报, 2006(3),659.
84 Han M, Yin X, Kong L, et al. Journal of Materials Chemistry A, 2014, 2(39),16403.
85 Wu G, Cheng Y, Xie Q, et al. Materials Letters, 2015, 144(4),157.
86 Gill N, Sharmaa L, Gupta V, et al. Journal of Alloys and Compounds, 2019,797,1190.
87 Dong S, Zhuang X D, Hu P T, et al. Chemical Engineering Journal, 2019,359,882.
88 Qian J H. Rare Metals, 2006, 30(4),6(in Chinese).
钱九红.稀有金属, 2006, 30(4),6.
89 Wang Y, Feng Y J, Liu Y K, et al. Chemical Engineer, 2006(9), 5(in Chinese).
王岩, 冯玉杰, 刘延坤,等.化学工程师, 2006(9), 5.
90 Zhou Y S, Wu X J, Zhou J Y, et al. Materials Reports, 2001(1), 43(in Chinese).
周宇松, 吴希俊, 周剑英,等.材料导报, 2001(1), 43.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[3] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[4] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[5] 黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
[6] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[7] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[8] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[9] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[10] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[11] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[12] 杨温鑫, 孟晓燕, 邓欣. 粉体粒径对数字光处理3D打印金刚石复合材料性能的影响[J]. 材料导报, 2023, 37(12): 21120211-6.
[13] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[14] 何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
[15] 王景东, 潘静雯, 张芝芳, 江剑, 黎健斌. CFRP层合板的二次低速冲击及剩余压缩强度试验研究[J]. 材料导报, 2023, 37(12): 21100084-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed