Research Progress of PtNi Alloy Catalysts for Oxygen Reduction Reaction
PANG Fangzhao1,2, YAO Chensiqi1, LI Anjin1, ZHAO Panchao3, LI Jigang1, YI Wei1, HE Jianyun1,*, JIANG Yunbo1,*, CHEN Yiwu4
1 Kunming Institute of Precious Metals, Kunming 650106, China 2 College of Science, Northeastern University, Shenyang 110819, China 3 Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China 4 China National Nuclear Industry Corporation 404,Jiayuguan 735112, Gansu, China
Abstract: Oxygen reduction reaction(ORR) is the key step in the cathodic catalytic reaction of proton exchange membrane fuel cell(PEMFC). It has been found from trends in oxygen reduction activity(volcano plot) that noble metal Pt has super-high catalytic performance; therefore, the most active commercial catalyst for ORR is still Pt/C so far. On the other hand, driven by the scarce resources and high price of Pt, continuous and numerous research efforts have also been made worldwide, aiming to develop Pt alloy catalysts and non-Pt catalysts. Adding a transition metal to change the d band is the common solution to develop low Pt catalyst. Researchers found that PtNi/C catalyst has an ORR activity far exceeding the commercial Pt/C catalyst. However, during operation the transition metal Ni atoms are prone to leach in the acidic condition, collapse the near-surface structure, lose the active facets, depress the ORR activity, and thus result in low stability for practical application. Currently the corresponding research is mainly focused on regulating catalyst crystal plane, surface strain and structure. By changing these factors, the electrochemical activity and durability of the catalyst can be improved. In particular, the octahedral shape has made the most remarkable progress on the surface of Pt3Ni(111) alloy, and the nanometer PtNi alloy octahedron sealed by (111) surface has become a very promising ORR bimetallic electrocatalyst. And besides, changing the support and element modification could also improve the ORR catalytic performance. This review addresses the current development of Pt-Ni based catalysts for oxygen reduction reaction. The main aspects entailed include: adjusting the exposed facet by morphology control, elements doping and modification, optimizing the support or developing new supports.
通讯作者:
* 何建云,2013年6月毕业于西北大学化工学院,获得工学硕士学位。现为昆明贵金属研究所工程师,主要从事碳材料负载贵金属催化剂的开发与应用研究。迄今为止发表期刊论文4篇。hejianyun@ipm.com.cn 蒋云波,副研究员,硕士研究生导师。2003年本科毕业于清华大学化学系,2006年硕士毕业于清华大学化学系, 2012年在美国约翰斯霍普金斯大学获得化学专业博士学位。后于2012—2015年在美国俄勒冈健康与科学大学进行博士后工作,现在昆明贵金属研究所从事贵金属催化材料的研发工作。主要研究方向包括贵金属非均相偶联反应催化材料、脱氢加氢催化材料及其在药物合成、新能源领域中的应用。迄今为止在Journal of American Chemical Society、Chemical Communications等学术期刊发表SCI论文20余篇。jyb@ipm.com.cn
1 Lile J R D,Zhou S. Electrochimica Acta,2015,177,4. 2 Feng D,Dong S B,Zong Y. Chemical Industry Times,2018,32(11),24(in Chinese). 冯丹,董仕宝,宗营. 化工时刊,2018,32(11),24. 3 Sharma S,Pollet B G. Journal of Power Sources,2012,208,96. 4 Barbir F. Solar Energy,2005,78(5),661. 5 Curtin D E,Lousenberg R D,Henry T J,et al. Journal of Power Sources,2004,131(1-2),41. 6 Yin J. Study on modification of nitrogen-doped carbon nanofibers and their catalytic activity for oxygen reduction reaction. Ph. D. Thesis,Harbin Institute of Technology,China,2013(in Chinese). 尹静. 电纺氮掺杂碳纳米纤维的改性及其氧还原催化性能的研究. 博士学位论文,哈尔滨工业大学,2013. 7 Shen D D,Lin R. World Nonferrous Metals,2018,513(21),233(in Chinese). 沈丹丹,林瑞. 世界有色金属,2018,513(21),233. 8 Nan H X,Dang D,Tian X L. Chemical Industry and Engineering Progress,2018,37(11),179(in Chinese). 南皓雄,党岱,田新龙. 化工进展,2018,37(11),179. 9 Zhang Z C. Engineering phase and surface composition of supported PtM alloy electrocatalysts. Master’s Thesis,Xiamen University,China,2017(in Chinese). 张宗成. 负载型PtM合金电催化剂的相和表面组成调控. 硕士学位论文,厦门大学,2017. 10 Bao Y X,Hao B W,Nan L,et al. Angewandte Chemie, 2015,54(12),3797. 11 Zhou Y M. The study of Pt M-Ag/C(M=Cu,Co,Ni) cathode catalysts for PEMFC. Master’s Thesis,Wuhan University of Technology,China,2015(in Chinese). 周艳梅. PEMFC阴极催化剂PtM-Ag/C(M=Cu,Co,Ni)的探索与研究. 硕士学位论文,武汉理工大学,2015. 12 Liu S,Wang L P,Tian L,et al. Nonferrous Metals Engineering,2020,10(2),1(in Chinese). 刘帅,王乐萍,田林,等. 有色金属工程,2020,10(2),1. 13 Ruiz-Zepeda F,Gatalo M,Jovanovi P,et al. Chemcatchem,2017,9(4),497. 14 Li Y J,Wang C,Zhang H. Materials Protection,2017,50(6),56(in Chinese). 李亚军,王成,张华. 材料保护,2017,50(6),56. 15 Zhang P F. The shape-controlled synthesis of Pt-Ni-Cu ternary alloy nanocrystals for electrocatalytic applications. Master’s Thesis,China University of Petroleum,China,2016(in Chinese). 张鹏方. Pt-Ni-Cu三元合金纳米粒子形貌可控合成及电催化性能研究. 硕士学位论文, 中国石油大学(北京),2016. 16 Kuttiyiel K A,Sasaki K,Park G G,et al. Chemical Communications,2017,53(10),1660. 17 Zhao H D,Guo Y,Yang W B,et al. China Sciencepaper,2013,8(6),576(in Chinese). 赵海东,郭永,杨文波,等. 中国科技论文,2013,8(6),576. 18 Li M,Zhao Z,Cheng T,et al. Science,2016,354(6318),1414. 19 Chong L N,Wen J G,Kubal J,et al. Science,2018,362(6420),1276. 20 Wu J,Gross A,Yang H. Nano Letters,2011,11(2),798. 21 Kang Y,Murray C B. Journal of the American Chemical Society,2010,132(22),7568. 22 Kim J,Lee Y,Sun S. Journal of the American Chemical Society,2010,132(14),4996. 23 Xu D,Liu Z,Yang H,et al. Angewandte Chemie International Edition,2009,48(23),4217. 24 Wang L,Nemoto Y,Yamauchi Y. Journal of the American Chemical Society,2011,133(25),9674. 25 Ataee-Esfahani H,Wang L,Nemoto Y,et al. Chemistry of Materials,2010,22(23),6310. 26 Zhang J,Yang H,Fang J,et al. Nano Letters,2010,10(2),638. 27 Wu J,Zhang J,Peng Z,et al. Journal of the American Chemical Society,2010,132(14),4984. 28 Wu Y,Cai S,Wang D,et al. Journal of the American Chemical Society,2012,134(21),8975. 29 Kuttiyiel K A,Sasaki K,Choi Y M,et al. Nano Letters,2012,12(12),6266. 30 Stamenkovic V R,Fowler B,Mun B S,et al. Science,2007,315(5811),493. 31 Cui C,Gan L,Heggen M,et al. Nature Materials,2013,12(8),765. 32 Duan X,Huang L,Li Y Y,et al. Rare Metal Materials and Engineering,2020,49(2),435. 33 Kong F,Ren Z,Banis M N,et al. ACS Catalysis, 2020,10,4205. 34 Jiang Z,Liu Y,Huang L,et al. ACS Sustainable Chemistry & Engineering,2019,7(9),8109. 35 Ma Y,Miao L,Guo W,et al. Chemistry of Materials,2018,30(13),4355. 36 Xia T,Liu J,Wang S,et al. ACS Applied Materials & Interfaces,2016,8(17),10841. 37 Cui C,Gan L,Li H H,et al. Nano Letters,2012,12(11),5885. 38 Yang Z,Wang M,Liu G,et al. Ionics,2020,26(1),293. 39 Lu Y,Thia L,Fisher A,et al. Science China Materials,2017,60(11),1109. 40 Zhang N,Chen H,Zhang D T,et al. Battery Bimonthly,2018,48(5),12(in Chinese). 张娜,陈红,章丹亭,等. 电池,2018,48(5),12. 41 Liu Y,Chen H,Tian C,et al. Electrocatalysis,2019,10(6),613. 42 Chang Q,Xu Y,Duan Z,et al. Nano Letters,2017,17(6),3926. 43 Ding J,Bu L,Guo S,et al. Nano Letters,2016,16(4),2762. 44 Gong W,Jiang Z,Huang L,et al. International Journal of Hydrogen Energy,2018,43(39),18436. 45 Gong W,Jiang Z,Wu R,et al. Applied Catalysis B: Environmental,2019,246,277. 46 Tian X,Zhao X,Su Y Q,et al. Science,2019,366(6467),850. 47 Kwon H,Kabiraz M K,Park J,et al. Nano Letters,2018,18(5),2930. 48 Song X,Luo S,Fan X,et al. Frontiers in Chemistry,2018,6,468. 49 You S,Luo P,Fang L,et al. Electrochimica Acta,2019,294,406. 50 Becknell N,Son Y,Kim D,et al. Journal of the American Chemical Society,2017,139(34),11678. 51 Niu Z Q,Becknell N,Yu Y,et al. Nature Materials,2016,15(11),1188. 52 Wang C,Zhang L,Yang H,et al. Nano Letters,2017,17(4),2204. 53 Chhetri M,Rana M,Loukya B,et al. Advanced Materials,2015,27(30),4430. 54 Teranishi T,Kurita R,Miyake M. Journal of Inorganic and Organometallic Polymers,2000,10(3),145. 55 Huang X,Zhao Z,Cao L,et al. Science,2015,348(6240),1230. 56 Lim J H,Shin H,Kim M J,et al. Nano Letters,2018,18(4),2450. 57 Beermann V,Gocyla M,Wilinger E,et al. Nano Letters,2016,16(3),1719. 58 Zhao Z,Feng M,Zhou J,et al. Chemical Communications,2016,52(75),11215. 59 Jung N,Bhattacharjee S,Gautam S,et al. NPG Asia Materials,2016,8(1),e237. 60 Wang S,Xiong L,Bi J,et al. ACS Applied Materials & Interfaces,2018,10(32),27009. 61 Choi J,Lee Y,Kim J,et al. Journal of Power Sources,2016,307,883. 62 Sun S G,Chen S L. Electrocatalysis,Chemical Industry Press,China,2013(in Chinese). 孙世刚,陈胜利. 电催化,化学工业出版社,2008. 63 Gasteiger H A,Kocha S S,Sompalli B,et al. Applied Catalysis B Environmental,56(1-2),9. 64 Maillard F,Bonnefont A,Micoud F. Electrochemistry Communications,2011,13(10),1109. 65 Zhao Z,Castanheira L,Dubau L,et al. Journal of Power Sources,2013,230(15),236. 66 Seifi A,Bahramian A R,Sharif A. Journal of Energy Storage,2016,7,195. 67 Ouattara-Brigaudet M,Berthon-Fabry S,Beauger C,et al. International Journal of Hydrogen Energy,2012,37(12),9742. 68 Ouattara-Brigaudet M,Beauger C,Berthon-Fabry S,et al. Fuel Cells,2011,11(6),726. 69 Liu J,Takeshi D,Sasaki K,et al. Journal of the Electrochemical Society,2014,161(9),838. 70 Eylul S Ö,Şansim B B,Selmi E B,et al. Electrochimica Acta,2017,250(1),174. 71 Bharti A,Cheruvally G. Journal of Power Sources,2017,360,196. 72 Heydari A,Gharibi H. Journal of Power Sources,2016,325,808. 73 Hussain S,Kongi N,Matisen L,et al. Electrochemistry Communications,2017,81,79. 74 Perini L,Durante C,Favaro M,et al. ACS Applied Materials & Interfaces,2015,7(2),1170. 75 Melke J,Peter B,Habereder A,et al. ACS Applied Materials & Interfaces,2016,8(1),82. 76 Zhang L L,Liu S J,Han H C,et al. Surface & Coatings Technology,2018,15(341),95. 77 Zhang P,Tao A,Tan Y,et al. Journal of Electronic Materials,2019,48,2780. 78 Sun K,Li J,Wang F,et al. Chemical Communications,2019,55(40),5693. 79 Begum M,Yurukcu M,Yurtsever F,et al. ECS Transactions,2017,80(8),919. 80 Luo Y,Feng J Z,Feng J,et al. Journal of Inorganic Material,2020,35(4),407(in Chinese). 罗燚,冯军宗,冯坚,等. 无机材料学报,2020,35(4),407. 81 Paulus U A,Schmidt T J,Gasteiger H A,et al. Journal of Electroanalytical Chemistry,2001,495(2),134. 82 Li J,Peng Z,Wang E. Journal of the American Chemical Society,2018,140(34),10629.