Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 20070194-9    https://doi.org/10.11896/cldb.20070194
  金属与金属基复合材料 |
用于氧还原反应的PtNi合金催化剂研究进展
逄芳钊1,2, 姚陈思琦1, 李安金1, 赵盘巢3, 李继刚1, 易伟1, 何建云1,*, 蒋云波1,*, 陈义武4
1 昆明贵金属研究所,昆明 650106
2 东北大学理学院,沈阳 110819
3 西北有色金属研究院,西安 710016
4 中核四0四有限公司,甘肃 嘉峪关 735112
Research Progress of PtNi Alloy Catalysts for Oxygen Reduction Reaction
PANG Fangzhao1,2, YAO Chensiqi1, LI Anjin1, ZHAO Panchao3, LI Jigang1, YI Wei1, HE Jianyun1,*, JIANG Yunbo1,*, CHEN Yiwu4
1 Kunming Institute of Precious Metals, Kunming 650106, China
2 College of Science, Northeastern University, Shenyang 110819, China
3 Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China
4 China National Nuclear Industry Corporation 404,Jiayuguan 735112, Gansu, China
下载:  全 文 ( PDF ) ( 16581KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氧还原反应是质子交换膜燃料电池阴极催化反应的关键步骤。氧还原活性趋势图(火山图)中,贵金属Pt超高的催化性能显而易见,因此目前氧还原性能最佳的商业化催化剂仍然是碳载铂(Pt/C)。另一方面,Pt昂贵的价格也促使国内外研究者尝试开发Pt合金催化剂、非Pt催化剂等新型催化剂。
在开发低Pt催化剂过程中,通过添加过渡金属来改变d带中心是较普遍的解决方案。研究者发现PtNi/C催化剂的氧还原性能远超商业化Pt/C催化剂,但催化剂中的过渡金属Ni在酸性条件下易溶解,从而破坏反应环境,导致稳定性较差。当前针对该问题的研究主要聚焦于调节催化剂晶面、表面应变以及组成结构,通过改变这些因素试图提高催化剂的电化学活性和耐久性。其中,由Pt3Ni(111)面封闭形成的八面体纳米颗粒已经被认为是很有前途的氧还原反应电催化剂,成为了PtNi双金属催化剂中的研究热点。此外,对合金表面进行其他金属/非金属元素修饰,改善催化剂载体性质,也可以实现催化剂氧还原性能的提高。
本文综述了近些年用于氧还原反应的Pt-Ni基催化剂的研究现状,主要包括通过催化剂形貌调控来控制暴露晶面、对催化剂进行表面修饰,以及载体性能优化和选用新的载体等方面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
逄芳钊
姚陈思琦
李安金
赵盘巢
李继刚
易伟
何建云
蒋云波
陈义武
关键词:  质子交换膜燃料电池  氧还原反应  铂镍合金催化剂  八面体    
Abstract: Oxygen reduction reaction(ORR) is the key step in the cathodic catalytic reaction of proton exchange membrane fuel cell(PEMFC). It has been found from trends in oxygen reduction activity(volcano plot) that noble metal Pt has super-high catalytic performance; therefore, the most active commercial catalyst for ORR is still Pt/C so far. On the other hand, driven by the scarce resources and high price of Pt, continuous and numerous research efforts have also been made worldwide, aiming to develop Pt alloy catalysts and non-Pt catalysts.
Adding a transition metal to change the d band is the common solution to develop low Pt catalyst. Researchers found that PtNi/C catalyst has an ORR activity far exceeding the commercial Pt/C catalyst. However, during operation the transition metal Ni atoms are prone to leach in the acidic condition, collapse the near-surface structure, lose the active facets, depress the ORR activity, and thus result in low stability for practical application. Currently the corresponding research is mainly focused on regulating catalyst crystal plane, surface strain and structure. By changing these factors, the electrochemical activity and durability of the catalyst can be improved. In particular, the octahedral shape has made the most remarkable progress on the surface of Pt3Ni(111) alloy, and the nanometer PtNi alloy octahedron sealed by (111) surface has become a very promising ORR bimetallic electrocatalyst. And besides, changing the support and element modification could also improve the ORR catalytic performance.
This review addresses the current development of Pt-Ni based catalysts for oxygen reduction reaction. The main aspects entailed include: adjusting the exposed facet by morphology control, elements doping and modification, optimizing the support or developing new supports.
Key words:  proton exchange membrane fuel cell    oxygen reduction reaction    PtNi-catalyst    octahedral
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG146.3  
基金资助: 国家自然科学基金(51864022);陕西省重点研发项目(2019GY-193);昆明市高层次人才引进创新技术进步项目(13020163)
通讯作者:  * 何建云,2013年6月毕业于西北大学化工学院,获得工学硕士学位。现为昆明贵金属研究所工程师,主要从事碳材料负载贵金属催化剂的开发与应用研究。迄今为止发表期刊论文4篇。hejianyun@ipm.com.cn
蒋云波,副研究员,硕士研究生导师。2003年本科毕业于清华大学化学系,2006年硕士毕业于清华大学化学系, 2012年在美国约翰斯霍普金斯大学获得化学专业博士学位。后于2012—2015年在美国俄勒冈健康与科学大学进行博士后工作,现在昆明贵金属研究所从事贵金属催化材料的研发工作。主要研究方向包括贵金属非均相偶联反应催化材料、脱氢加氢催化材料及其在药物合成、新能源领域中的应用。迄今为止在Journal of American Chemical Society、Chemical Communications等学术期刊发表SCI论文20余篇。jyb@ipm.com.cn   
作者简介:  逄芳钊,2018年6月毕业于沈阳化工大学,获得工学学士学位。现为东北大学理学院硕士研究生,于昆明贵金属研究所进行联合培养,在易伟、蒋云波两位研究员的指导下进行研究。目前主要研究质子交换膜燃料电池铂基催化剂。
引用本文:    
逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
PANG Fangzhao, YAO Chensiqi, LI Anjin, ZHAO Panchao, LI Jigang, YI Wei, HE Jianyun, JIANG Yunbo, CHEN Yiwu. Research Progress of PtNi Alloy Catalysts for Oxygen Reduction Reaction. Materials Reports, 2023, 37(1): 20070194-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070194  或          http://www.mater-rep.com/CN/Y2023/V37/I1/20070194
1 Lile J R D,Zhou S. Electrochimica Acta,2015,177,4.
2 Feng D,Dong S B,Zong Y. Chemical Industry Times,2018,32(11),24(in Chinese).
冯丹,董仕宝,宗营. 化工时刊,2018,32(11),24.
3 Sharma S,Pollet B G. Journal of Power Sources,2012,208,96.
4 Barbir F. Solar Energy,2005,78(5),661.
5 Curtin D E,Lousenberg R D,Henry T J,et al. Journal of Power Sources,2004,131(1-2),41.
6 Yin J. Study on modification of nitrogen-doped carbon nanofibers and their catalytic activity for oxygen reduction reaction. Ph. D. Thesis,Harbin Institute of Technology,China,2013(in Chinese).
尹静. 电纺氮掺杂碳纳米纤维的改性及其氧还原催化性能的研究. 博士学位论文,哈尔滨工业大学,2013.
7 Shen D D,Lin R. World Nonferrous Metals,2018,513(21),233(in Chinese).
沈丹丹,林瑞. 世界有色金属,2018,513(21),233.
8 Nan H X,Dang D,Tian X L. Chemical Industry and Engineering Progress,2018,37(11),179(in Chinese).
南皓雄,党岱,田新龙. 化工进展,2018,37(11),179.
9 Zhang Z C. Engineering phase and surface composition of supported PtM alloy electrocatalysts. Master’s Thesis,Xiamen University,China,2017(in Chinese).
张宗成. 负载型PtM合金电催化剂的相和表面组成调控. 硕士学位论文,厦门大学,2017.
10 Bao Y X,Hao B W,Nan L,et al. Angewandte Chemie, 2015,54(12),3797.
11 Zhou Y M. The study of Pt M-Ag/C(M=Cu,Co,Ni) cathode catalysts for PEMFC. Master’s Thesis,Wuhan University of Technology,China,2015(in Chinese).
周艳梅. PEMFC阴极催化剂PtM-Ag/C(M=Cu,Co,Ni)的探索与研究. 硕士学位论文,武汉理工大学,2015.
12 Liu S,Wang L P,Tian L,et al. Nonferrous Metals Engineering,2020,10(2),1(in Chinese).
刘帅,王乐萍,田林,等. 有色金属工程,2020,10(2),1.
13 Ruiz-Zepeda F,Gatalo M,Jovanovi P,et al. Chemcatchem,2017,9(4),497.
14 Li Y J,Wang C,Zhang H. Materials Protection,2017,50(6),56(in Chinese).
李亚军,王成,张华. 材料保护,2017,50(6),56.
15 Zhang P F. The shape-controlled synthesis of Pt-Ni-Cu ternary alloy nanocrystals for electrocatalytic applications. Master’s Thesis,China University of Petroleum,China,2016(in Chinese).
张鹏方. Pt-Ni-Cu三元合金纳米粒子形貌可控合成及电催化性能研究. 硕士学位论文, 中国石油大学(北京),2016.
16 Kuttiyiel K A,Sasaki K,Park G G,et al. Chemical Communications,2017,53(10),1660.
17 Zhao H D,Guo Y,Yang W B,et al. China Sciencepaper,2013,8(6),576(in Chinese).
赵海东,郭永,杨文波,等. 中国科技论文,2013,8(6),576.
18 Li M,Zhao Z,Cheng T,et al. Science,2016,354(6318),1414.
19 Chong L N,Wen J G,Kubal J,et al. Science,2018,362(6420),1276.
20 Wu J,Gross A,Yang H. Nano Letters,2011,11(2),798.
21 Kang Y,Murray C B. Journal of the American Chemical Society,2010,132(22),7568.
22 Kim J,Lee Y,Sun S. Journal of the American Chemical Society,2010,132(14),4996.
23 Xu D,Liu Z,Yang H,et al. Angewandte Chemie International Edition,2009,48(23),4217.
24 Wang L,Nemoto Y,Yamauchi Y. Journal of the American Chemical Society,2011,133(25),9674.
25 Ataee-Esfahani H,Wang L,Nemoto Y,et al. Chemistry of Materials,2010,22(23),6310.
26 Zhang J,Yang H,Fang J,et al. Nano Letters,2010,10(2),638.
27 Wu J,Zhang J,Peng Z,et al. Journal of the American Chemical Society,2010,132(14),4984.
28 Wu Y,Cai S,Wang D,et al. Journal of the American Chemical Society,2012,134(21),8975.
29 Kuttiyiel K A,Sasaki K,Choi Y M,et al. Nano Letters,2012,12(12),6266.
30 Stamenkovic V R,Fowler B,Mun B S,et al. Science,2007,315(5811),493.
31 Cui C,Gan L,Heggen M,et al. Nature Materials,2013,12(8),765.
32 Duan X,Huang L,Li Y Y,et al. Rare Metal Materials and Engineering,2020,49(2),435.
33 Kong F,Ren Z,Banis M N,et al. ACS Catalysis, 2020,10,4205.
34 Jiang Z,Liu Y,Huang L,et al. ACS Sustainable Chemistry & Engineering,2019,7(9),8109.
35 Ma Y,Miao L,Guo W,et al. Chemistry of Materials,2018,30(13),4355.
36 Xia T,Liu J,Wang S,et al. ACS Applied Materials & Interfaces,2016,8(17),10841.
37 Cui C,Gan L,Li H H,et al. Nano Letters,2012,12(11),5885.
38 Yang Z,Wang M,Liu G,et al. Ionics,2020,26(1),293.
39 Lu Y,Thia L,Fisher A,et al. Science China Materials,2017,60(11),1109.
40 Zhang N,Chen H,Zhang D T,et al. Battery Bimonthly,2018,48(5),12(in Chinese).
张娜,陈红,章丹亭,等. 电池,2018,48(5),12.
41 Liu Y,Chen H,Tian C,et al. Electrocatalysis,2019,10(6),613.
42 Chang Q,Xu Y,Duan Z,et al. Nano Letters,2017,17(6),3926.
43 Ding J,Bu L,Guo S,et al. Nano Letters,2016,16(4),2762.
44 Gong W,Jiang Z,Huang L,et al. International Journal of Hydrogen Energy,2018,43(39),18436.
45 Gong W,Jiang Z,Wu R,et al. Applied Catalysis B: Environmental,2019,246,277.
46 Tian X,Zhao X,Su Y Q,et al. Science,2019,366(6467),850.
47 Kwon H,Kabiraz M K,Park J,et al. Nano Letters,2018,18(5),2930.
48 Song X,Luo S,Fan X,et al. Frontiers in Chemistry,2018,6,468.
49 You S,Luo P,Fang L,et al. Electrochimica Acta,2019,294,406.
50 Becknell N,Son Y,Kim D,et al. Journal of the American Chemical Society,2017,139(34),11678.
51 Niu Z Q,Becknell N,Yu Y,et al. Nature Materials,2016,15(11),1188.
52 Wang C,Zhang L,Yang H,et al. Nano Letters,2017,17(4),2204.
53 Chhetri M,Rana M,Loukya B,et al. Advanced Materials,2015,27(30),4430.
54 Teranishi T,Kurita R,Miyake M. Journal of Inorganic and Organometallic Polymers,2000,10(3),145.
55 Huang X,Zhao Z,Cao L,et al. Science,2015,348(6240),1230.
56 Lim J H,Shin H,Kim M J,et al. Nano Letters,2018,18(4),2450.
57 Beermann V,Gocyla M,Wilinger E,et al. Nano Letters,2016,16(3),1719.
58 Zhao Z,Feng M,Zhou J,et al. Chemical Communications,2016,52(75),11215.
59 Jung N,Bhattacharjee S,Gautam S,et al. NPG Asia Materials,2016,8(1),e237.
60 Wang S,Xiong L,Bi J,et al. ACS Applied Materials & Interfaces,2018,10(32),27009.
61 Choi J,Lee Y,Kim J,et al. Journal of Power Sources,2016,307,883.
62 Sun S G,Chen S L. Electrocatalysis,Chemical Industry Press,China,2013(in Chinese).
孙世刚,陈胜利. 电催化,化学工业出版社,2008.
63 Gasteiger H A,Kocha S S,Sompalli B,et al. Applied Catalysis B Environmental,56(1-2),9.
64 Maillard F,Bonnefont A,Micoud F. Electrochemistry Communications,2011,13(10),1109.
65 Zhao Z,Castanheira L,Dubau L,et al. Journal of Power Sources,2013,230(15),236.
66 Seifi A,Bahramian A R,Sharif A. Journal of Energy Storage,2016,7,195.
67 Ouattara-Brigaudet M,Berthon-Fabry S,Beauger C,et al. International Journal of Hydrogen Energy,2012,37(12),9742.
68 Ouattara-Brigaudet M,Beauger C,Berthon-Fabry S,et al. Fuel Cells,2011,11(6),726.
69 Liu J,Takeshi D,Sasaki K,et al. Journal of the Electrochemical Society,2014,161(9),838.
70 Eylul S Ö,Şansim B B,Selmi E B,et al. Electrochimica Acta,2017,250(1),174.
71 Bharti A,Cheruvally G. Journal of Power Sources,2017,360,196.
72 Heydari A,Gharibi H. Journal of Power Sources,2016,325,808.
73 Hussain S,Kongi N,Matisen L,et al. Electrochemistry Communications,2017,81,79.
74 Perini L,Durante C,Favaro M,et al. ACS Applied Materials & Interfaces,2015,7(2),1170.
75 Melke J,Peter B,Habereder A,et al. ACS Applied Materials & Interfaces,2016,8(1),82.
76 Zhang L L,Liu S J,Han H C,et al. Surface & Coatings Technology,2018,15(341),95.
77 Zhang P,Tao A,Tan Y,et al. Journal of Electronic Materials,2019,48,2780.
78 Sun K,Li J,Wang F,et al. Chemical Communications,2019,55(40),5693.
79 Begum M,Yurukcu M,Yurtsever F,et al. ECS Transactions,2017,80(8),919.
80 Luo Y,Feng J Z,Feng J,et al. Journal of Inorganic Material,2020,35(4),407(in Chinese).
罗燚,冯军宗,冯坚,等. 无机材料学报,2020,35(4),407.
81 Paulus U A,Schmidt T J,Gasteiger H A,et al. Journal of Electroanalytical Chemistry,2001,495(2),134.
82 Li J,Peng Z,Wang E. Journal of the American Chemical Society,2018,140(34),10629.
[1] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[2] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[3] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[4] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[5] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[6] 张立昌, 蔡超, 谭金婷, 周江峰, 王园, 潘牧. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 21030086-7.
[7] 吴国玉, 郑晔, 王明涌, 邢志军. Co修饰的碳载Pt纳米粒子催化剂的制备与表征[J]. 材料导报, 2021, 35(z2): 306-310.
[8] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[9] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[10] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[11] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[12] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[13] 吕路强, 沈骏, 向路, 刘双翼, 谢雄, 周猛兵. 碳基纳米结构作为燃料电池催化剂载体的研究进展*[J]. 材料导报, 2017, 31(21): 9-18.
[14] 汪广进, 程凡, 徐甜, 余意, 文胜, 龚春丽, 刘海, 汪杰, 郑根稳, 潘牧. 二次烧结气氛对La0.7Sr0.3MnO3氧还原催化活性的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 33-36.
[15] 蔡超, 陈亚男, 傅凯林, 潘牧. 质子交换膜燃料电池中Pt/C及Pt合金/C催化剂的衰退机制研究综述[J]. 《材料导报》期刊社, 2017, 31(17): 20-26.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed