Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21040096-6    https://doi.org/10.11896/cldb.21040096
  无机非金属及其复合材料 |
磷掺杂对碳载铂催化剂氧还原催化性能的影响
刘金伟, 畅丽媛, 王如志*
北京工业大学材料与制造学部新能源材料与技术研究所,新型功能材料教育部重点实验室,北京 100124
Effect of Phosphorus Doping on the Catalytic Performance of Carbon Supported Platinum Catalysts for Oxygen Reduction
LIU Jinwei, CHANG Liyuan, WANG Ruzhi*
Key Laboratory of Advanced Functional Materials of Education Ministry of China, Institute of Advanced Energy Materials and Devices (Faculty of Materials and Manufacturing), Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 8364KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探索合成具有高催化活性和稳定性的质子交换膜燃料电池的新型低铂催化剂,本工作使用改进的浸渍还原法,成功制备了磷掺杂改性的碳载铂催化剂(Px-Pt/C)。通过对系列Px-Pt/C的电化学性能测试,发现磷掺杂能够提升Pt/C的氧还原反应催化性能,其中P1.5-Pt/C的质量活性是商业催化剂JM20Pt/C的1.6倍。在10 000圈的加速老化测试后,P1.5-Pt/C电化学活性面积增加2.92%,质量活性衰减43.87%;而JM20Pt/C的电化学活性面积减少33.70%,质量活性衰减53.33%。可以看出,磷掺杂有利于提升Pt/C催化剂氧还原反应的催化活性和稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘金伟
畅丽媛
王如志
关键词:  磷掺杂  氧还原反应  质子交换膜燃料电池  铂基催化剂  稳定性    
Abstract: In order to explore the synthesis of new type of low platinum catalyst for proton exchange membrane fuel cells with high catalytic activity and stability, a phosphorus-doped modified carbon-supported platinum catalyst (Px-Pt/C) was successfully prepared by an improved impregnation reduction method. The electrochemical performance test proves that the catalytic oxygen reduction reaction (ORR) performance of Pt/C can be improved by phosphorus doping. The mass activity (MA) of P1.5-Pt/C is 1.6 times higher than that of JM20Pt/C. After 10 000 cycles accelerated durability test, the electrochemical surface area (ECSA) of P1.5-Pt/C increases by 2.92%, with MA decreasing by 43.87%, while the ECSA of JM20Pt/C decreases by 33.7%, with MA decreasing by 53.33%, respectively. It is shown that phosphating can improve the ORR catalytic activity and stability of Pt/C catalysts.
Key words:  phosphorus doping    oxygen reduction reaction    proton exchange membrane fuel cell    platinum-based catalyst    stability
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TM911.46  
基金资助: 国家自然科学基金(11774017)
通讯作者:  * wrz@bjut.edu.cn   
作者简介:  刘金伟,2018年毕业于河南理工大学材料科学与工程专业,获工学学士学位。现为北京工业大学硕士研究生,在王如志教授指导下进行研究,主要研究方向为质子交换膜燃料电池低铂催化剂的制备及其性能研究。21040096-6
王如志,北京工业大学教授、博士研究生导师,新能源材料与技术研究所所长。1997年于湘潭大学物理系获工学学士学位,2000年于湘潭大学物理系获理学硕士学位,2003年于北京工业大学材料科学与工程学院获工学博士学位。曾为美国麻省理工学院访问学者、日本产业综合技术研究所特别研究员、香港中文大学研究助理及香港城市大学访问研究员。目前主要研究领域为新能源材料与技术、纳米半导体光电功能材料与器件及人工智能新材料与器件技术。已在Energy & Environmental Science、Advanced Materials、Journal of the American Chemical Society、Advanced Functional Materials、Chemistry of Materials、Journal of Materials Chemistry :A、Physical Review B、Applied Physics Letters等国际知名学术刊物上发表SCI收录论文150多篇,其中,以第一或通讯作者发表的SCI收录一、二区论文70余篇。申请国家发明专利90余项,其中第一发明人国家授权发明专利20余项。主持了军科委基础加强计划重点基础研究项目课题、5项国家自然科学基金、北京市科技新星计划及北京市自然科学基金等科研项目10余项。
引用本文:    
刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
LIU Jinwei, CHANG Liyuan, WANG Ruzhi. Effect of Phosphorus Doping on the Catalytic Performance of Carbon Supported Platinum Catalysts for Oxygen Reduction. Materials Reports, 2022, 36(21): 21040096-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040096  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21040096
1 Sun G, Zhao Z J, Mu R, et al. Nature Communication, 2018, 9(1), 4454.
2 Meng H B, Zhang X F, Pu Y L, et al. Journal of Colloid and Interface Science, 2019, 543, 17.
3 Banham D, Ye S. ACS Energy Letters, 2017, 2 (3), 629.
4 Chen M, He Y, Spendelow J S, et al. ACS Energy Letters, 2019, 4(7), 1619.
5 Uchida H, Izumi K, Watnabe M.The Journal of Physical Chemistry B, 2006, 110(43), 21924.
6 Gupta G, Slanac D A, Kumar P, et al. Chemistry of Materials, 2009, 21(19), 4515.
7 Jayasayee K, Dam V A T, Verhoeven T, et al. The Journal of Physical Chemistry C, 2009, 113(47), 20371.
8 Cheng N, Mu S, Chen X, et al. Electrochimica Acta, 2011, 56(5), 2154.
9 Cai C, Chen Y N, Fu K L, et al. Materials Reports A: Review Papers, 2017, 31(9), 20 (in Chinese).
蔡超, 陈亚男, 傅凯林,等. 材料导报:综述篇, 2017, 31(9), 20.
10 Chen Z, Rao D, Zhang J, et al. ACS Applied Energy Materials, 2019, 2(7), 4763.
11 Chen L, Chen B, Zhou C, et al.The Journal of Physical Chemistry C, 2008, 112(36), 13937.
12 Wang Y J, Zhao N, Fang B, et al.Chemical Reviews, 2015, 115(9), 3433.
13 Shao M, Chang Q, Dodelet J P, et al.Chemical Reviews, 2016, 116, 3594.
14 Xie C, Niu Z, Kim D, et al.Chemical Reviews, 2020, 120(2), 1184.
15 Nørskov J K, Rossmeisl J, Logadottir A, et al.The Journal of Physical Chemistry B, 2004, 108(46), 17886.
16 Zhang W, Zhu J, Cheng D, et al.ACS Applied Nano Materials, 2020, 3(3), 2536.
17 Liu J, Lan J, Yang L, et al.ACS Sustainable Chemistry & Engineering, 2019, 7(7), 6541.
18 Lv H, Sun L, Xu D, et al.Science Bulletin, 2020, 65(21), 1823.
19 Chen L, Lu L L, Zhu H L, et al.Nature Communication, 2017, 8, 14136.
20 Xu C, Hoque M A, Chiu G, et al.RSC Advances, 2016, 6(113), 112226.
21 Cheng N, Zhang L, Mi S, et al.ACS Applied Materials & Interfaces, 2018, 10(44), 38015.
22 Baronia R, Goel J, Tiwari S,et al. International Journal of Hydrogen Energy, 2017, 42(15), 10238.
23 Yu D, Xue Y, Dai L.The Journal of Physical Chemistry Letters, 2012, 3(19), 2863.
24 Jung W S, Popov B N. ACS Sustainable Chemistry & Engineering, 2017, 5(11), 9809.
25 Greeley J, Stephens I E L, Bondarenko A S, et al.Nature Chemistry, 2009, 1(7), 552.
26 Zhang L L, Wei M, Wang, S Q, et al. Chemical Science, 2015, 6(5), 3211.
27 Xiong Y, Ma Y, Zou L, et al.Journal of Catalysis, 2020, 382, 247.
[1] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[2] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[3] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[4] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[5] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[6] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[7] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[8] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[9] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[10] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[11] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[12] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[13] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[14] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[15] 汪建强, 徐斌, 谢碧君, 张健杨, 孙明月. ODS钢在热加工过程中纳米氧化物演化行为的研究进展[J]. 材料导报, 2022, 36(19): 20110267-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed