Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21060093-6    https://doi.org/10.11896/cldb.21060093
  无机非金属及其复合材料 |
双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究
何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高*
天津大学化工学院,天津 300072
Preparation of Amphiphilic TiO2 Nanoparticles with Highly-stabilized Non-aqueous Dispersibility
HE Yingzhi, ZHAO Qian, WANG Shirong, LIU Hongli, ZHANG Tianyong, LI Bin, LI Xianggao*
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
下载:  全 文 ( PDF ) ( 3688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钛酸丁酯(TBOT)为钛源、氨水(25%~28%)为反应介质、阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)为改性剂,采用水热法合成并改性双亲型二氧化钛纳米粒子。通过控制反应温度和反应时间,对水热合成的过程进行了探究。为防止二氧化钛粒子的团聚、提高其在有机分散介质中的荷电量及分散稳定性,在反应体系中添加不同浓度的CTAB对生成的二氧化钛纳米粒子进行表面改性。通过X射线衍射光谱(XRD)、扫描电镜(SEM)、红外光谱(FTIR)对改性后的二氧化钛纳米粒子进行了表征。对Zeta(ζ)电位、粒径及其分布、电泳淌度和分散稳定性进行了探究。结果表明,当CTAB加入浓度为0.7 mg/mL时,二氧化钛纳米粒子在Isopar L中的Zeta电位值最高为+58.89 mV,且粒子分散稳定。本研究提供了一种能够均匀分散在非水中的双亲型TiO2纳米粒子合成方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何盈至
赵谦
王世荣
刘红丽
张天永
李彬
李祥高
关键词:  二氧化钛纳米粒子  水热法  Zeta电位  分散稳定性  非水体系    
Abstract: Amphiphilic titanium dioxide nanoparticles were synthesized and modified by a hydrothermal method using tetrabutyl titanate (TBOT) as the titanium source and cationic surfactant cetyltrimethylammonium bromide (CTAB) as the modifier in ammonia water(25%—28%) medium. The hydrothermal synthesis process was investigated by controlling the reaction temperature and time in this work. The surface of prepared TiO2 particles was modified by cationic surfactant CTAB with varied concentrations in the reaction system in order to prevent the agglomeration of TiO2 nanoparticles and improve their charge and dispersion stability in organic dispersion medium. The modified TiO2 nanoparticles were fully characterized by X-ray diffraction spectroscopy(XRD), scanning electron microscope(SEM) and infrared absorption spectroscopy. The properties of Zeta (ζ) potential, particle size distribution, electrophoretic mobility and dispersion stability were explored. The results show that the Zeta potential of TiO2 nanoparticles in Isopar L reaches as high as +58.89 mV and particles maintains high dispersion stability, when CTAB has been added at an optimal concentration of 0.7 mg/mL. This study provides an efficient way to synthesis uniformed and amphiphilic TiO2 nanoparticles with well-dispersed property in the non-aqueous solution.
Key words:  titanium dioxide nanoparticles    hydrothermal method    Zeta potential    dispersion stability    non-aqueous system
发布日期:  2022-10-26
ZTFLH:  TQ134  
基金资助: 国家自然科学基金(201908161);天津市自然科学基金青年基金(20JCQNJC01220)
通讯作者:  *lixianggao@tju.edu.cn   
作者简介:  何盈至,硕士研究生,本科毕业于河南师范大学,目前就读于天津大学化工学院。研究方向为电子纸方向,研究的主要内容为用于电泳显示的粒子制备与改性以及电泳显示微胶囊的合成。
李祥高,天津大学长聘教授、博士研究生导师。在湖南大学获得学士学位,在中国科学院长春应用化学研究所获得硕士学位,在天津大学获得博士学位。从事有机光电子材料的设计、合成、性能及器件的工业化技术研究。主持过多项863计划、国家自然科学基金和天津市科技计划项目。发表研究论文110余篇,获授权国家发明专利30余项。
引用本文:    
何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
HE Yingzhi, ZHAO Qian, WANG Shirong, LIU Hongli, ZHANG Tianyong, LI Bin, LI Xianggao. Preparation of Amphiphilic TiO2 Nanoparticles with Highly-stabilized Non-aqueous Dispersibility. Materials Reports, 2022, 36(20): 21060093-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060093  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21060093
1 Wang X, Hu X W, Liang J Y, et al. China Leather, 2018, 47(2), 28(in Chinese).
王旭, 胡小稳, 梁纪宇, 等. 中国皮革, 2018, 47(2), 28.
2 Alexis M, Wormington J C, Matthew M, et al. Environmental Toxicology and Chemistry, 2017, 36, 1661.
3 Kobotaeva N S, Skorokhodova T S. Chemistry for Sustainable Development, 2019, 27(1), 8.
4 Xie Y X, Sun Z X, Li H. Journal of Chinese Electron Microscopy Society, 2017, 36(3), 207(in Chinese).
谢裕兴, 孙振兴, 李涵. 电子显微学报, 2017, 36(3), 207.
5 Hu X H, Zhang Y H, Wang X. Chemical Research, 2019, 30(2), 170(in Chinese).
胡秀虹, 张延辉, 王翔. 化学研究, 2019, 30(2), 170.
6 Wang L, Jang X, Wang C, et al. Coloration Technology, 2020, 136(1), 15.
7 Zhang Q, Li C Y. Catalysis Today, 2020, 358(1), 172.
8 Abrar A, Gurbet Y, Ziaur R, et al. International Journal of Hydrogen Energy, 2020, 45(4), 2709.
9 Xi Y L, Qi Y L, Mao Z P. Costruction and Buliding Materials, 2021, 266, 120916.
10 Liu Y, Zhang Y, Ge C, et al. Applied Surface Science,2009,255(16),7427.
11 Chen B, Xian F, Hou Z J, et al. Applied Chemical Industry, 2018, 47(4), 693(in Chinese).
陈贝, 缐芳, 侯智婕, 等. 应用化工, 2018, 47(4), 693.
12 Rusu E, Ursaki V, Gutul T, et al. 3rd International Conference on Nanotechnologies and Biomedical Engineering Springer Singapore,2016,55,93.
13 Shah A H, Rather M A. Materialstoday: Peoceedings,2021,44(1),482.
14 Dong X B, Zhang X W, Liu X R. Inorganic Chemicals Industry, 2020, 52(10), 30(in Chinese).
董雄波, 张祥伟, 刘晓瑞, 等. 无机盐工业, 2020, 52(10), 30.
15 Li H, Leng Y M, Ma C P. Fine Chemicals,2021,28(3),1(in Chinese).
李辉, 冷莹梦, 马长坡. 精细化工, 2021, 28(3), 1.
16 Shi Y T, Zhang Q L, Liu Y Z, et al. Chinese Journal of Catalysis, 2019, 40(5), 786.
17 王靖,喻明英,杨成,等. 中国专利,CN109498486B, 2019.
18 Liu Z J, Li X G, Wang S R. Journal of Inorganic Materials, 2012, 27(6), 649(in Chinese).
柳志杰, 李祥高, 王世荣. 无机材料学报, 2012, 27(6), 649.
19 Thi T V, Chiao C H, Selvaraj R K, et al. Korean Journal of Chemical Engineering, 2019, 36(8), 1328.
20 Hong Y Y, Feng C, Yan C J, et al. Chemical Engineering Journal, 2013, 214, 229.
[1] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[2] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[3] 侯悦悦, 曾晓辉, 龙广成, 谢友均, 肖丙辰, 辜英晗, 东怀正, 潘自立, 赵万强, 杨江凡. 天然火山灰-水泥-粉煤灰复合浆体流变性能[J]. 材料导报, 2022, 36(19): 21020038-6.
[4] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[5] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[6] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[7] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[8] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[9] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[10] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[11] 翟莹, 苗苗, 肖立鲜. 锂渣细度对掺减水剂的水泥浆体流变性能的影响[J]. 材料导报, 2020, 34(18): 18056-18059.
[12] 刘盼, 朱彬, 吕东风, 崔帅, 崔燚, 魏颖娜, 魏恒勇, 卜景龙. 多级结构CoNiO2/TiN复合纤维的制备及电化学性能[J]. 材料导报, 2020, 34(10): 10024-10029.
[13] 刘光蓉, 李露, 张祖超, 冯支斌. 人造金红石母液制备α-Fe2O3纳米颗粒的研究[J]. 材料导报, 2019, 33(Z2): 150-153.
[14] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[15] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed