Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10024-10029    https://doi.org/10.11896/cldb.19020042
  无机非金属及其复合材料 |
多级结构CoNiO2/TiN复合纤维的制备及电化学性能
刘盼1,2, 朱彬1,2, 吕东风1,2, 崔帅1,2, 崔燚1,2, 魏颖娜1,2, 魏恒勇1,2, 卜景龙1,2
1 华北理工大学材料科学与工程学院,唐山 063009
2 河北省无机非金属材料重点实验室,唐山 063009
Fabrication of CoNiO2/TiN Composite Fibers with Hierarchial Structure and Their Electrochemical Performance
LIU Pan1,2, ZHU Bin1,2, LYU Dongfeng1,2, CUI Shuai1,2, CUI Yi1,2, WEI Yingna1,2, WEI Hengyong1,2, BU Jinglong1,2
1 College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063009, China
2 Key Laboratory for Inorganic Nonmetallic Materials of Hebei Province, Tangshan 063009, China
下载:  全 文 ( PDF ) ( 5285KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以钛酸丁酯为钛源,PVP为助纺剂,通过静电纺丝结合氨气还原氮化法制备出TiN纤维,再利用水热法在TiN纤维表面生长CoNiO2纳米线,得到多级结构CoNiO2/TiN复合纤维。利用XRD、XPS、SEM及BET等表征纤维的物相、形貌和孔结构。结果表明,纤维为立方相TiN,其直径约为280 nm。经水热处理后,TiN纤维表面生长有直径约10 nm的CoNiO2纳米线。其中,镍、钴元素分别以Ni2+/Ni3+和Co2+/Co3+价态形式存在。CoNiO2/TiN复合纤维比表面积增加至123.8 m2/g,平均孔径为13.6 nm,孔容达到0.4 cm3/g。CoNiO2/TiN复合纤维电极材料储能过程中双电层与赝电容并存,在100 mA/g充放电电流密度下其比电容达到205.4 F/g。当功率密度为66.6 W/kg时,能量密度为26.8 Wh/kg。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘盼
朱彬
吕东风
崔帅
崔燚
魏颖娜
魏恒勇
卜景龙
关键词:  CoNiO2/TiN  复合纤维  水热法  电化学    
Abstract: TiN fibers were prepared by electrospinning combined with ammonia reduction nitridation process using butyl titanate as the titanium source and PVP as spinning agent. The CoNiO2/TiN composite fibers with hierarchial structure were obtained via hydrothermal method, in which the CoNiO2 nanowires grew on TiN fibers surface. The XRD, XPS, SEM and BET results indicated that the TiN fibers had cubic phase with the diameter of about 280 nm. The CoNiO2 nanowires with a diameter of about 10 nm were grown on the TiN fibers after hydrothermal treatment. Nickel and cobalt elements were present in the form of Ni2+/Ni3+ and Co2+/Co3+ respectively. The fibers had a mesoporous structure that the average pore size was 13.6 nm and the specific surface area was 123.8 cm2/g. The pore volume of CoNiO2/TiN fibers was 0.4 cm3/g. The CoNiO2/TiN composite fibers electrode exhibits the characteristics of electric double layer and pseudo capacitance. At the same time, the specific capacitance of CoNiO2/TiN fibers reached 205.4 F/g at current density of 100 mA/g. When the power density was 66.6 W/kg, the energy density was 26.8 Wh/kg.
Key words:  CoNiO2/TiN    composite fibers    hydrothermal method    electrochemistry
               出版日期:  2020-05-25      发布日期:  2020-04-26
ZTFLH:  TB34  
  O614.41+1  
基金资助: 国家自然科学基金(51272066;51472072);河北省自然科学基金(E2013209183;E2019209474);华北理工大学杰出青年基金(JQ201712)
通讯作者:  魏恒勇,2010年9月毕业于同济大学,获得材料学博士学位。研究方向为仿生材料,耐高温隔热材料,超级电容器,表面等离激元及吸波材料。why_why2000@163.com   
作者简介:  刘盼,于2016年9月至2019年3月在华北理工大学攻读硕士学位,主要从事新型高温结构材料和超级电容器的研究。
引用本文:    
刘盼, 朱彬, 吕东风, 崔帅, 崔燚, 魏颖娜, 魏恒勇, 卜景龙. 多级结构CoNiO2/TiN复合纤维的制备及电化学性能[J]. 材料导报, 2020, 34(10): 10024-10029.
LIU Pan, ZHU Bin, LYU Dongfeng, CUI Shuai, CUI Yi, WEI Yingna, WEI Hengyong, BU Jinglong. Fabrication of CoNiO2/TiN Composite Fibers with Hierarchial Structure and Their Electrochemical Performance. Materials Reports, 2020, 34(10): 10024-10029.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020042  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10024
1 Mann M E, Bradley R S, Hughes M K, et al. Nature, 1998, 392(6678), 779.
2 Miller J R, Simon P. Science, 2008, 321(5889), 651.
3 康维. 电化学超级电容: 科学原理及技术应用,化学工业出版社, 2005.
4 Zhou H. Preparation and electrochemical properties of three-dimensional nanoporous titanium matrix composite films. Ph.D. Thesis, Zhejiang University, China, 2014(in Chinese).
周环. 三维纳米多孔钛基复合膜的制备与电化学性能研究.博士学位论文,浙江大学, 2014.
5 Du W M, Gao Y P, Tian Q Q, et al. Journal of Nanoparticle Research, 2015, 17(9), 368.
6 Roberson S L, Finello D, Davis R F. Journal of Applied Electrochemistry, 1999, 29(1), 75.
7 Lee J H, Lim J Y, Chang S L, et al. Applied Surface Science, 2017, 420, 849.
8 Xu M W, Bao S J, Li H L. Journal of Solid State Electrochemistry, 2007, 11(3), 372.
9 Cheng J, Li H P, Huang S Y, et al. Journal of the American Ceramic Society, 2014, 97(8), 4.
10 Zhou X, Shang C, Gu L, et al. ACS Applied Materials & Interfaces, 2011, 3(8), 3058.
11 Sun D F, Lang J W, Yan X B, et al. Journal of Solid State Chemistry, 2011, 184(5), 1333.
12 Kumar M, Subramania A, Balakrishnan K. Electrochimica Acta, 2014, 149, 152.
13 Ren B, Fan M Q, Wang Jun, et,al. Journal of the Electrochemical Society, 2013, 160(9), 79.
14 Zheng P, Jia D S, Tang J, et al. Journal of Materials Chemistry A, 2014, 2(28), 10904.
15 Gao G, Wu H B, Ding S, et al. Small, 2014, 11(7), 804.
16 Muhamed S K, Milan P, Tirupattur S N. Journal of Materials Chemistry A, 2015, 3(14),7513.
17 Zhao J, Li Z J, Zhang M, et al. ACS Sustainable Chemistry & Enginee-ring, 2016, 4(7), 3598.
18 Xiong L P, Xu Y S, Li Y. Nuclear Techniques, 2009, 32(9), 675(in Chinese).
熊亮萍, 许云书, 黎阳. 核技术, 2009, 32(9), 675.
19 Shang C Q, Dong S M, Wang S, et al. ACS Nano, 2013, 7(6), 5430.
20 Cui B, Lin H, Liu Y Z, et al. Journal of Physical Chemistry C, 2009, 113(32), 14083.
21 Lu X H, Wang G M, Zhai T, et al. Nano Letters, 2012, 12(10), 5376.
22 Wen W, Wu J M, Jiang Y Z, et al. Science News, 2018, 546(4), 165.
23 Choi D, Kumta P N. Journal of the Electrochemical Society, 2006, 153(12), 2298.
24 Jamnik J, Maier J. Physical Chemistry Chemical Physics, 2003, 5(23), 5215.
25 Li L, Zhang X, Li J, et al. Chinese Journal of Inorganic Chemistry, 2017, 33(4), 607(in Chinese).
李玲, 张雪, 李晶, 等. 无机化学学报, 2017, 33(4), 607.
26 Liu X Y, Zhang Y Q, Xia X H, et al. Journal of Power Sources, 2013, 239(239), 157.
27 Xia X H, Chao D L, Zhang Y Q, et al. Small, 2016, 12(22), 3048.
28 Mi J, Li W C. Chinese Journal of Power Sources, 2014, 38(7), 1394(in Chinese).
米娟, 李文翠. 电源技术, 2014, 38(7), 1394.
29 Li F Z, Gao K L, Xie D, et al. Environmental Pollution and Control, 2017, 39(4), 356(in Chinese).
李飞贞, 高康乐, 解迪, 等. 环境污染与防治, 2017, 39(4), 356.
30 Xie S, Tong X L, Jin G Q, et al. Journal of Materials Chemistry A, 2013, 1(6), 2104.
[1] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[2] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[3] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[4] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[5] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[6] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[7] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[8] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[9] 胡洋东, 贺跃辉, 李喜德, 陈杰, 刘羽祚, 杨军胜1,. Ni-Cr-Fe合金薄膜电极的制备及析氢性能[J]. 材料导报, 2020, 34(24): 24074-24079.
[10] 荆婉婷, 吴明. 海洋干湿交替环境中HCO3-浓度对X100钢腐蚀行为的影响[J]. 材料导报, 2020, 34(24): 24138-24144.
[11] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[12] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[13] 肖帅, 王振飞, 张萍, 何岗, 洪建和. 还原氧化石墨烯/碳纸空气电极的电化学制备及性能[J]. 材料导报, 2020, 34(20): 20005-20009.
[14] 崔田路, 曹中秋, 贾中秋, 于佳蕊, 徐欢, 张轲, 王艳. 块体纳米晶Fe-50Cu合金在H2SO4溶液中的电化学腐蚀行为[J]. 材料导报, 2020, 34(20): 20096-20102.
[15] 李小康, 朱思聪, 张仁刚, 彭顺金. 一种低能带隙结晶完整的D-A型共轭导电聚合物电化学沉积与表征[J]. 材料导报, 2020, 34(20): 20147-20151.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed