Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24074-24079    https://doi.org/10.11896/cldb.19120147
  金属与金属基复合材料 |
Ni-Cr-Fe合金薄膜电极的制备及析氢性能
胡洋东1, 贺跃辉2, 李喜德1, 陈杰1, 刘羽祚1, 杨军胜1
1 武汉轻工大学机械工程学院,武汉430023
2 中南大学粉末冶金国家重点实验室,长沙410083
Preparation of Ni-Cr-Fe Alloy Membrane Electrode and Its Hydrogen Evolution Performance
HU Yangdong1, HE Yuehui2, LI Xide1, CHEN Jie1, LIU Yuzuo1, YANG Junsheng1
1 School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 7538KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以废旧马口铁为基体,Ni粉、Cr粉为覆膜材料,通过活化反应烧结法制备了Ni-Cr-Fe三元薄膜合金电极。采用X射线衍射分析(XRD)、场发射扫描电镜(SEM)、X射线能谱分析(EDS)、X射线光电子能谱分析(XPS)等对电极的物相、形貌结构、元素分布进行表征,并研究了电极材料的析氢机理,通过循环伏安曲线(CV)、线性极化曲线(LSV)、电化学交流阻抗(EIS)等方法测试了电极材料的电催化析氢性能。研究结果显示,在室温条件下,Ni-Fe二元合金电极材料在6 mol/L KOH溶液中的析氢过电位为-0.59 V,交换电流密度为20.6 mA/cm2,Tafel斜率为121.3 mV/dec。同样条件下,调节Cr含量可提高析氢催化活性,Ni-30%Cr-Fe(质量分数,下同)三元薄膜合金电极材料的析氢催化活性最强,其析氢过电位仅有-0.39 V,交换电流密度为30.9 mA/cm2,Tafel斜率为78.1 mV/dec,经28 160 s开路电位测试,电极材料的开路电位(η)从-0.87 V变化为-0.69 V,仅增加18 mV,表明析氢电极的化学稳定性好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡洋东
贺跃辉
李喜德
陈杰
刘羽祚
杨军胜1
关键词:  马口铁  电化学  Ni-Cr-Fe  析氢过电位  薄膜电极    
Abstract: Ni-Cr-Fe ternary alloy membrane electrode was prepared by activation reactive sintering method with Ni powder, Cr powder and disused tinplate as raw material. The phase constitution, morphology and element component were characterized by XRD, SEM, EDS and XPS. The electrocatalytic hydrogen evolution performance of Ni-Cr-Fe alloy electrode was investigated by cyclic voltammetry curve, the linear polarization curve, potentiodynamic polarization curve, and electrochemical impedance spectrum. The results indicated that, at room temperature, hydrogen evolution over-potential of Ni-Fe binary alloy electrode material in 6 mol/L KOH solution was -0.59 V, and the exchange current density is 20.6 mA/cm2, and Tafel slope is 121.3 mV/dec. Under the same condition, the Ni-Cr-Fe ternary alloy membrane electrode exhibits better hydrogen evolution performance. The hydrogen evolution catalytic activity is improved by adjusting the content of Cr. Furthermore, Ni-30wt%Cr-Fe membrane electrode displayed the best hydrogen evolution ability. It′s overpotential for hydrogen evolution is only -0.39 V, the exchange current density is 30.9 mA/cm2, and Tafel slope is 78.1 mV/dec. Through the open circuit potential test, the open circuit potential (η) of the electrode material changed from -0.87 V to -0.69 V after 28 160 s, only increased by 18 mV, which indicating that the electrode has good chemical stability.
Key words:  tinplate    electrochemistry    Ni-Cr-Fe    hydrogen evolution overpotential    membrane electrode
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  O646  
基金资助: 国家自然科学基金(51704221);武汉轻工大学杰出青年基金(2018J05)
通讯作者:  yangjunsheng2008@163.com   
作者简介:  胡洋东,男,硕士研究生,2018年起就读于武汉轻工大学,现主要研究方向:多孔材料,膜分离材料及技术,微纳材料。
杨军胜,男,讲师。2014年毕业于中南大学粉末冶金研究院,获粉体材料科学与工程博士学位。主要研究方向为多孔材料、膜分离材料及技术、微纳材料。
引用本文:    
胡洋东, 贺跃辉, 李喜德, 陈杰, 刘羽祚, 杨军胜1,. Ni-Cr-Fe合金薄膜电极的制备及析氢性能[J]. 材料导报, 2020, 34(24): 24074-24079.
HU Yangdong, HE Yuehui, LI Xide, CHEN Jie, LIU Yuzuo, YANG Junsheng. Preparation of Ni-Cr-Fe Alloy Membrane Electrode and Its Hydrogen Evolution Performance. Materials Reports, 2020, 34(24): 24074-24079.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120147  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24074
1 Ren J, Gao S, Tan S, et al. Renewable & Sustainable Energy Reviews, 2015, 41, 1230.
2 Do Sacramento E M, Carvalho P C M, De Lima L C, et al. Energy Policy, 2013, 62, 3.
3 Ahamd H, Kamarudin S K, Minggu L J, et al.Renewable and Sustainable Energy Reviews, 2015, 43(1), 599.
4 Rausch B, Symes M D, Chisholm G, et al.Science, 2014, 345(6202), 1326.
5 Qiu H J, Kang J L, Liu P, et al. Journal of Power Sources, 2014, 247(2), 896.
6 Qiu H J, Ito Y, Chen M W.Scripta Materialia, 2014, 89 (30), 69.
7 Du J J, Li N, Xu J X, et al. Journal of Functional Materials, 2015, 46(9), 9001 (in Chinese).
杜晶晶, 李娜, 许建雄, 等. 功能材料, 2015, 46(9), 9001.
8 Guo D X, Zhang Q H, Wang H Z, et al.Journal of Inorganic Materials, 2015, 30(10), 1025.
9 Rosalbino F, Scavino G, Grande M A.Journal of Electroanalytical Che-mistry, 2013, 694 (1), 114.
10 Gao M Y, Yang C, Zhang Q B, et al.Electrochimica Acta, 2016, 215, 609.
11 Jakšić J M, Vojnović M V, Krstajić N V.Electrochimica Acta, 2000, 45(25-26), 4151.
12 Xia M, Lei T, Lv N, et al.Hydrogen Energy, 2014, 39 (10), 4794.
13 Jakšić M M.Electrochimica Acta, 1984, 29 (11), 1539.
14 Krstajić N V, JoviČ V D, Gajić-Krstajić L, et al.International Journal of Hydrogen Energy, 2008, 33, 3676.
15 Liu Y, Hua X, Xiao C, et al. Journal of the American Chemical Society, 2016, 138 (15), 5087.
16 Musa A Y, Wren J C.Corrosion Science, 2016, 109, 1.
17 Liu Y. Investigation on the fabrication and properties of the porous Ni-Cr-Fe materials. Master′s Thesis, Xiangtan University, China, 2016 (in Chinese).
刘艳. Ni-Cr-Fe多孔材料的制备与性能研究. 硕士学位论文, 湘潭大学, 2016.
18 Liu Y. Mo-MoSe2 core-shell nanostructures for hydrogen evolution reaction. Master′s Thesis, University of Electronic Science and Technology of China, China, 2016 (in Chinese).
屈银东. 钼-二硒化钼核壳型纳米结构实现高效析氢. 硕士学位论文, 电子科技大学, 2016.
19 Zhu Q, Li Z Y. Chinese Journal of Inorganic Chenistry, 2018, 34(12),71(in Chinese).
周琦, 李志洋.无机化学学报,2018, 34(12),71.
20 Su Y Z, Xiao K, Li N, et al.Journal of Materials Chemistry A, 2014, 2 (34), 13845.
21 Fu Y, Song J, Zhu Y, et al.Journal of Power Sources, 2014, 262, 344.
22 Ali-LoÖytty H, Louie M W, Singh M R, et al.The Journal of Physical Chemistry C, 2016, 120 (4), 2247.
23 Salunkhe R R, Lin J, Malgras V, et al.Nano Energy, 2015, 11 (59), 211.
24 Hassel M, Hemmerich I, Kuhlenbec K H, et al.Surface Science Spectra, 1996, 4(3), 246.
25 Feng J X, Xu H, Dong Y T, et al. Angewandte Chemie International Edition, 2016, 55 (11), 3694.
[1] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[2] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[3] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[4] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[5] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[6] 荆婉婷, 吴明. 海洋干湿交替环境中HCO3-浓度对X100钢腐蚀行为的影响[J]. 材料导报, 2020, 34(24): 24138-24144.
[7] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[8] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[9] 肖帅, 王振飞, 张萍, 何岗, 洪建和. 还原氧化石墨烯/碳纸空气电极的电化学制备及性能[J]. 材料导报, 2020, 34(20): 20005-20009.
[10] 崔田路, 曹中秋, 贾中秋, 于佳蕊, 徐欢, 张轲, 王艳. 块体纳米晶Fe-50Cu合金在H2SO4溶液中的电化学腐蚀行为[J]. 材料导报, 2020, 34(20): 20096-20102.
[11] 李小康, 朱思聪, 张仁刚, 彭顺金. 一种低能带隙结晶完整的D-A型共轭导电聚合物电化学沉积与表征[J]. 材料导报, 2020, 34(20): 20147-20151.
[12] 周杰, 杨明莉. 电化学方法制备MOF膜的研究进展[J]. 材料导报, 2020, 34(19): 19043-19049.
[13] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[14] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[15] 崔帅, 呼世磊, 吕东风, 崔燚, 魏颖娜, 魏恒勇, 卜景龙, 陈越军. 介孔氮化铌粉体的制备及电化学性能[J]. 材料导报, 2020, 34(14): 14009-14015.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed