Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19043-19049    https://doi.org/10.11896/cldb.19070010
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
电化学方法制备MOF膜的研究进展
周杰, 杨明莉
重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400030
Recent Research Progress in Electrochemical Preparation of MOF Films
ZHOU Jie, YANG Mingli
State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China
下载:  全 文 ( PDF ) ( 3065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机骨架(Metal-organic frameworks, MOFs)是由金属节点与有机配体通过配位键连接而成的高度有序的多孔网络框架材料。MOFs具有比表面积大、可设计和调控的结构、主-客体相互作用的性质和强度,在气体吸附、储存、催化、传感、磁学、光学、电化学、药物传输等领域有着巨大的应用潜力,成为近20年来发展最为迅速的一类新型多孔功能纳米材料。
开发MOF功能膜器件和装置更需要合成MOF膜而非MOF晶体体相材料,但合成完整、无缺陷的MOF膜仍要面对挑战。合成MOF膜的方法主要有水热合成法、微波合成法、超声合成法、机械球磨法和电化学合成法。电化学合成法快速、在常温常压下进行、化学试剂消耗少,与通常耗时长、不能在常温常压下合成的其他几种方法相比具有明显的优势。
本文综述了近10年来电化学合成MOF膜的阳极合成法、阴极合成法、间接双极沉积法、电位移法、电泳沉积法及其应用方面的研究进展,并关注各电化学合成法的优缺点及其在MOF膜制备方法、成膜原理上的差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周杰
杨明莉
关键词:  金属-有机骨架  电化学合成法  薄膜  纳米多孔材料    
Abstract: Metal-organic frameworks (MOFs) are highly-ordered porous network frameworks constructed from metallic nodes and organic ligands linked together with coordination bonds. MOFs have significant potential applications in gas adsorption, storage, catalysis, sensing, magnetism, optics, electrochemistry, drug delivery, etc. because of their large surface area, designable and tunable structures and nature and strength of host-guest interactions. They have become one of the highest-growing types of functional nanostructured porous solids in the past two decades.
MOFs as thin films are much more desirable than MOFs as bulk crystals in the development of MOFs-based components and devices. But the synthesis of defect-free MOF films is still a challenge. The methods for MOF film preparation mainly include hydrothermal synthesis, microwave synthesis, ultrasonic synthesis, mechanical ball milling and electrochemical synthesis. Electrochemical synthesis, usually fast, under environmental temperature and pressure, and with less chemical reagents, has obvious advantages over other methods, which are generally considered as time-consuming and under strict conditions.
This paper reviews the relative progress in MOF film electrochemical synthesis techniques, anodic synthesis, cathode deposition, indirect bipolar electrodeposition (IBED), galvanic displacement, and electrophoretic deposition (EDP) and their applications over the last decade and highlight advantages and disadvantages of electrochemical synthesis methods above as well as the differences in their techniques and mechanisms.
Key words:  metal-organic frameworks    electrochemical synthesis    films    nanoporous materials
                    发布日期:  2020-11-05
ZTFLH:  TQ035  
基金资助: 国家重点实验室面上课题(2011DA105287-MS201402);教育部出国留学回国人员科研启动基金项目(教外司留(2010)609-1);重庆市教委科学技术研究项目(KJ08A02)
通讯作者:  yangmls@cqu.edu.cn   
作者简介:  周杰,重庆大学资源与安全学院环境科学与工程专业硕士研究生,研究重点为MOF膜材料的电化学制备。
杨明莉,重庆大学副教授、博士,主要从事物理化学、生物化学及相关领域的教学和科研。
引用本文:    
周杰, 杨明莉. 电化学方法制备MOF膜的研究进展[J]. 材料导报, 2020, 34(19): 19043-19049.
ZHOU Jie, YANG Mingli. Recent Research Progress in Electrochemical Preparation of MOF Films. Materials Reports, 2020, 34(19): 19043-19049.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070010  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19043
1 Rodenas T, Luz I, Prieto G, et al. Nature Materials,2014,14(1),48.
2 Suh M P, Park H J, Prasad T K, et al. Chemical Reviews,2012,112(2),782.
3 Gascon J, Corma A, Kapteijn F, et al. ACS Catalysis,2013,4(2),361.
4 Kreno L E, Leong K, Farha O K, et al. Chemical Reviews,2012,112(2),1105.
5 Zhang F, Zhang T, Zou X, et al. Solid State Ionics,2017,301,125.
6 Tu M, Wannapaiboon S, Fischer R A. Inorganic Chemistry Frontiers,2014,1(6),442.
7 Wang C, Xie Z, Dekrafft K E, et al. Journal of the American Chemical Society,2011,133(34),13445.
8 Chidambaram A, Stylianou K. Inorganic Chemistry Frontiers,2018,5,979.
9 Horcajada P, Chalati T, Serre C, et al. Nature Materials,2009,9(2),172.
10 Kaur R, Kim K H, Deep A. Applied Surface Science,2017,396,1303.
11 Díaz R, Orcajo M G, Botas J A, et al. Materials Letters,2012,68,126.
12 Bétard, Angélique, Fischer R A.Chemical Reviews,2012,112(2),1055.
13 Shekhah O, Liu J, Fischer R A, et al. Chemical Society Reviews,2011,40(2),1081.
14 Gough D V, Lambert T N, Wheeler D R, et al. ACS Applied Materials and Interfaces,2014,6(3),1509.
15 Makiura R, Motoyama S, Umemura Y, et al. Nature Materials,2010,9(7),565.
16 So M C, Jin S, Son H J, et al. Journal of the American Chemical Society,2013,135(42),15698.
17 Yoo Y, Jeong H K. Chemical Communications,2008,21,2441.
18 Horcajada P, Serre C, Grosso D, et al. Advanced Materials,2009,21(19),1931.
19 Abuzalat O, Wong D, Elsayed M, et al. Ultrasonics Sonochemistry,2018,45,180.
20 Li M Y, Dincă M. Journal of the American Chemical Society,2011,133(33),12926.
21 Joaristi A M, Jana J A, Pablo S C, et al. Crystal Growth and Design,2012,12(7),3489.
22 Ameloot R, Stappers L, Fransaer J, et al. Chemistry of Materials,2009,21(13),2580.
23 Idan H, Wojciech B, David M K, et al. Advanced Materials,2014,26(36),6295.
24 Wei J Z, Wang X L, Sun X J, et al. Materials Reports A: Review Papers,2018,32(5),1435(in Chinese).
魏金枝,王雪亮,孙晓君,等.材料导报:综述篇,2018,32(5),1435.
25 Hanan A K, Gascon J, Rassaei L, et al. ChemElectroChem,2015,2(4),462.
26 Loget G, Roche J, Gianessi E, et al. Journal of the American Chemical Society,2012,134(49),20033.
27 Ameloot R, Pandey L, Auweraer M V D, et al. Chemical Communications,2010,46(21),3735.
28 Mueller U, Schubert M, Teich F, et al. ChemInform,2006,37(23),626.
29 Nicolò C,Tom V A, Tom B, et al. Journal of Materials Chemistry A,2013,1(19),5827.
30 Assche T R C V,Nicolò C, Thibault M, et al. Microporous and Mesoporous Materials,2016,224,302.
31 Assche T R C V, Desmet G, Ameloot R, et al. Microporous and Mesoporous Materials,2012,158,209.
32 Kumar R S, Kumar S S. Microporous and Mesoporous Materials,2013,168,57.
33 Liu Z Z, Shi Y, Li C Y, et al. Acta Physico-Chimica. Sinica,2015,31(12),2366.(in Chinese)
刘震震,石勇,李春艳,等.物理化学学报,2015,31(12),2366.
34 Lestari W W, Nugraha R E, Winarni I D, et al. AIP Conference Procee-dings,2016,1725,020038.
35 Sachdeva S, Pustovarenko A, Sudhölter E J. R, et al. CrystEngComm,2016,18,4018.
36 Warakulwit C, Yadnum S, Boonyuen C, et al. CrystEngComm,2016,18,5095.
37 Ho M L, Chen Y A, Chen T C, et al. Dalton Transactions,2012,41(9),2592.
38 Cheng K Y, Wang J C, Lin C Y, et al. Dalton Transactions,2014,43(17),6536.
39 Li W J, Lü J, Gao S Y, et al. Journal of Materials Chemistry A,2014,2(45),19473.
40 Nicolò C, Ernesto R S, Dirk E D V, et al. Chemical Communications,2014,50(83),12545.
41 Yang H M, Song X L, Yang T L, et al. RSC Advances,2014,4(30),15720.
42 Yang H M, Liu X, Song X L, et al. Transactions of Nonferrous Metals Society of China,2015,25(12),3987.
43 Stassen I, Styles M, Nicolò C, et al. Chemistry of Materials,2015,27(5),1801.
44 Ben V D V, Ameloot R, Stassen I, et al. Journal of Materials Chemistry C,2013,1(46),7716.
45 Hartmann M, Kunz S, Himsl D, et al. Langmuir: the ACS Journal of Surfaces and Colloids,2008,24(16),8634.
46 Nicolò C, Assche T R C V, Stappers L, et al. Journal of Materials Che-mistry A,2016,4(10),3914.
47 Worrall S D, Bissett M A, Attfield M P, et al. CrystEngComm,2018,20,4421.
48 Stavila V, Volponi J, Katzenmeyer A M, et al. Chemical Science,2012,3(5),1531.
49 Li M Y, Dincă M. Chemistry of Materials,2015,27(9),3203.
50 Liu H P, Wang H M, Chu T S, et al. Journal of Materials Chemistry C,2014,2(41),8683.
51 Wang Z H, Liu H P, Wang S Y, et al. Sensors and Actuators: B Chemical,2015,220,779.
52 Lan H Z, Pan D D, Sun Y Y, et al. Analytica Chimica Acta,2016,937,53.
53 Gao N N. In-situ fabrication of electroactive MOFs on electrode surface and their application in electrochemical sensors. Master's Thesis, Minnan Normal University,China,2018(in Chinese).
高宁宁.电活性MOFs在电极表面现场制备及其电化学传感应用.硕士学位论文,闽南师范大学,2018.
54 Sudarat Y, Jérome R, Eric L, et al. Angewandte Chemie,2014,53(15),4001.
55 Asaf S, Menny S, Idan H, et al. ACS Nano,2010,4(10),5962.
56 Bailey R C, Stevenson K J, Hupp J T.Advanced Materials,2016,12(24),1930.
57 Hadraba H, Drdlik D, Chlup Z, et al. Journal of the European Ceramic Society,2012,32(9),2053.
[1] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[2] 陈营, 魏燕红, 陈德平, 慕东. 中温成型含硅可溶性聚酰亚胺薄膜及其性能研究[J]. 材料导报, 2020, 34(Z1): 572-575.
[3] 阎森飚, 徐键. CZTS薄膜太阳能电池无镉缓冲层材料的研究进展[J]. 材料导报, 2020, 34(7): 7045-7052.
[4] 彭增伟, 刘保亭. 外延掺锰铁酸铋薄膜电容器的光电导和光伏效应[J]. 材料导报, 2020, 34(6): 6010-6014.
[5] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[6] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[7] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. 原子层沉积氮化钽薄膜的研究进展[J]. 材料导报, 2020, 34(19): 19101-19110.
[8] 何亭睿, 王一平, 李雄杰, 陈朋, 胡悫睿, 杨颖, 宁洪龙. 可交联型P(VDF-CTFE-DB)/PMN-PT-Sm纳米复合薄膜的制备及介电和储能性能[J]. 材料导报, 2020, 34(18): 18152-18158.
[9] 陈洁, 张忻, 刘洪亮, 肖怡新, 李凡, 冯琦, 赵伟康, 刘燕琴, 张久兴. 七铝酸十二钙电子化合物研究进展[J]. 材料导报, 2020, 34(13): 13076-13083.
[10] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[11] 周婉秋, 赵玉明, 刘晓安, 杨佳宇, 姜文印, 辛士刚, 康艳红. 1-乙基-3-甲基咪唑硫酸乙酯盐离子液体中采用电化学法合成聚苯胺薄膜及其耐蚀性[J]. 材料导报, 2020, 34(12): 12152-12157.
[12] 王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
[13] 薛秀丽,王世斌,曾超峰,李林安,王志勇. 柔性基底上金属薄膜的失效行为及界面能测试方法研究进展[J]. 材料导报, 2020, 34(1): 1050-1058.
[14] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[15] 马立云, 汤永康, 鲍田, 金良茂, 甘治平, 李刚. 宽谱增透双层TiO2-SiO2/SiO2薄膜的制备与性能[J]. 材料导报, 2019, 33(Z2): 161-164.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed