Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13076-13083    https://doi.org/10.11896/cldb.19050051
  无机非金属及其复合材料 |
七铝酸十二钙电子化合物研究进展
陈洁1, 张忻1, 刘洪亮1, 肖怡新1, 李凡1, 冯琦1, 赵伟康1, 刘燕琴1, 张久兴1,2
1 北京工业大学材料科学与工程学院,新型功能材料教育部重点实验室,北京 100124
2 合肥工业大学材料科学与工程学院,合肥 230009
Advances in the Study of C12A7:e- Electride
CHEN Jie1, ZHANG Xin1, LIU Hongliang1, XIAO Yixin1, LI Fan1, FENG Qi1, ZHAO Weikang1, LIU Yanqin1, ZHANG Jiuxing1,2
1 Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering,Beijing University of Technology, Beijing 100124, China
2 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
下载:  全 文 ( PDF ) ( 4070KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙铝石电子化合物[Ca24Al28O64]4+:4e-(C12A7:e-)作为一种极具潜力的透明导电氧化物,自2002年进入人们的视野以来,就掀起了研究热潮,其制备工艺及应用在短短几年内取得了非常可观的发展。相较于其他电子化合物,它具有较好的化学稳定性,在450 ℃以下的空气中可以稳定存在。此外C12A7:e-的独特纳米笼状结构使其具有较低的逸出功、较好的耐离子轰击能力以及可控的电性能,因此它在真空电子器件、催化化学反应以及超导等领域有着巨大的应用潜力。与传统阴极材料相比,它有两大优势:(1)逸出功低,比常见金属元素Ni(5.0 eV)、Mo(4.6 eV)以及LaB6(2.67 eV)都要低;(2)耐离子轰击,阴极工作时因离子轰击而产生的溅射效应决定着阴极的寿命,而C12A7晶体中较强的化学键力使得它有着更加优良的耐离子轰击性能。此外,还有研究者在拓展该材料在催化剂载体、荧光灯、OLED等方面的应用。
然而,C12A7:e-的制备周期过长、还原条件苛刻、还原后电子浓度较低等难题一直制约着该材料的发展和应用。因此,近年来除深入探究该材料的应用外,研究者们还从开发高效快捷的多晶、单晶以及薄膜制备工艺方面不断尝试,并取得了丰硕的成果,在充分发挥C12A7:e-应用优势的同时大幅缩短了制备周期并提高了电子浓度。目前,所制备的C12A7:e-的电子浓度可达2.3×1021 cm-3,接近理论电子浓度2.33×1021 cm-3;在室温下的电导率也由2002年的0.3 S·cm-1跃升至1 380 S·cm-1
自2002年Hayashi发现被紫外线照射后的C12A7:H-会由绝缘体变成电导体C12A7:e-后,广大学者便致力于开发更加高效快捷的制备方法。2003年,Matsuishi等利用Ca金属气氛还原法制得了高电子浓度(2×1021 cm-3)的C12A7:e-,但该方法会在样品表面形成致密的CaO薄膜而阻碍还原的继续进行,导致还原时间过长。此后,Hosono用Ti取代Ca金属有效缩短了还原时间,但金属蒸汽还原不能还原薄膜样品。2006年,CO/CO2气氛还原法解决了这一问题,但还原后样品的电子浓度较低(Ne~1.4×1019 cm-3)。最近由本课题组开发的放电等离子体烧结(SPS)结合Ti金属还原法以及原位铝热还原法能够在0.5 h内还原制得接近理论电子浓度2.33×1021 cm-3的C12A7:e-块体,是众多制备方法中还原时间最短、成本最低、最容易批量化生产的两种方法,克服了制备周期长、能耗大及电子浓度低等难题,这些优势为其大规模应用奠定了基础。但该方法只能用来制备C12A7:e-多晶块体,仍然存在较大的局限性。
本文归纳了关于C12A7:e-制备方法的研究进展,分别对C12A7:e-单晶、薄膜、多晶块体的制备方法展开论述并对比了目前采用较为广泛的制备方法的优缺点,分析了制备该材料所面临的问题并对其应用前景进行了展望,以期为寻找到更快速有效的制备方法提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈洁
张忻
刘洪亮
肖怡新
李凡
冯琦
赵伟康
刘燕琴
张久兴
关键词:  C12A7:e-电子化合物  还原  单晶  块体  薄膜    
Abstract: In 2002, researchers at the Tokyo Institute of Technology synthesized a new inorganic mayenite electride—12CaO·7Al2O3:2e- (hereinafter C12A7:e-), as a potential transparent conductive oxide, which opened a new chapter in electride synthesis and utilization. Compared with other organic electrides, it has better chemical stability and can be stable in air below 450 ℃.This thermally stable electride has a number of potentially useful properties, such as air-stability, low work function, excellent performance in resisting poisoning, and metallic conductivity. Thermal stability and low reactivity with air make this material has a broad application prospect in electron emitter, optical device, catalyst support and other fields. Especially, C12A7:e- has been found to have certain emission performance at low temperature and is very suitable as a electron emission material for low-power vacuum electronic devices. Compared with commercialized cathode materials, such as Ni(5.0 eV), Mo(4.6 eV) and LaB6(2.67 eV), C12A7:e-exhibits low work function (~2.4 eV). On the other hand, the strong chemical bond force in C12A7 crystal makes it have better ion bombardment resistance. The sputtering effect of ion bombardment on the cathode at work has an impact influence on the service life. Furthermore, the search for other inorganic electrides is a very promising area of study.
Due to the prolonged synthesis cycle and special encapsulation, in the past decade, substantial efforts have been devoted to seeking simple and efficient route to acquire the electride in desire forms. So far, various forms of mayenite electride have been realized, mainly including single crystal, thin film and polycrystalline. These researchers have been working to make full use of the advantages of C12A7:e- applications while significantly reducing the preparation cycle and increasing the electron concentration. Now, the electron concentration of C12A7:e- can reach 2.3×1021 cm-3, which is close to the theoretical electron concentration of 2.33×1021 cm-3.The conductivity at room temperature also jumped from 0.3 S·cm-1 in 2002 to 1 380 S·cm-1.
Since Hayashi found that C12A7:H- can be changed from an insulator to an electrical conductor C12A7:e- after being exposed to ultraviolet light, many scholars have been working on developing more efficient and rapid preparation methods. In 2003, Matsuishi et al. prepared C12A7:e- with high electron concentration (2×1021 cm-3) by Ca metal vapor reduction, but this method would form a dense CaO film on the sample surface and hinder the continuation of reduction, resulting in too long reduction time. After that, Hosono effectively reduced reduction time by replacing Ca metal with Ti, but metal vapor reduction could not reduce C12A7:e- film. In 2006, the CO/CO2 atmospheric reduction solved this problem, but the sample prepared had a low electron concentration (Ne~1.4×1019 cm-3).Recently developed by our team of SPS combinate with Ti metal vapor reduction method and in-situ aluminothermic reduction process, can manufacture the high electron concentration (Ne~2.3×1021 cm-3) C12A7:e- block within 0.5 h. These two methods need the shortest reduction time, lowest cost, and are the easiest way to mass production in many preparation methods, they overcome many problem, such as the long preparation period, large energy consumption and low electron concentration, which laid a foundation for its large-scale application. However, those methods still has great limitations, because they can only be used to prepare C12A7:e- polycrystalline block.
This paper summarizes the preparation methods of C12A7:e- single crystal, thin film and polycrystalline, compares the advantages and disadvantages of each preparation method, analyzes the problems faced by the preparation of the material and prospects its application, in order to provide reference for finding a more rapid and effective preparation method.
Key words:  C12A7:e-    electronic compound    reduction    single crystal    block    thin film
                    发布日期:  2020-06-24
ZTFLH:  TJ430.4  
基金资助: 北京自然科学基金(2112007);中央高校基础研究基金(PXM2019-014204-500032)
通讯作者:  zhxin@bjut.edu.cn   
作者简介:  陈洁,2017年6月毕业于聊城大学,获得工学学士学位。现为北京工业大学材料科学与工程学院硕士研究生,目前主要研究领域为阴极电子发射材料。
张忻,男,副研究员,2006年1月毕业于北京工业大学材料学专业,获工学博士学位,同年5月开始在北京工业大学材料科学与工程学院从事教学和科研工作。2011年获得北京市优秀青年骨干教师项目资助,2013年9月—2014年9月于清华大学访学,2015年3月—2016年3月于日本东北大学访学。目前主要从事热电能源转换材料及其器件以及新型阴极电子材料领域的研究。先后主持和参与国家自然科学基金、北京市自然科学基金。担任J. Appl. Phy.、J. Alloy. Comp.、J. Electr. Mater.等国际刊物审稿人。
引用本文:    
陈洁, 张忻, 刘洪亮, 肖怡新, 李凡, 冯琦, 赵伟康, 刘燕琴, 张久兴. 七铝酸十二钙电子化合物研究进展[J]. 材料导报, 2020, 34(13): 13076-13083.
CHEN Jie, ZHANG Xin, LIU Hongliang, XIAO Yixin, LI Fan, FENG Qi, ZHAO Weikang, LIU Yanqin, ZHANG Jiuxing. Advances in the Study of C12A7:e- Electride. Materials Reports, 2020, 34(13): 13076-13083.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050051  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13076
1 Wang Z, Pan Y, Dong T, et al. Applied Catalysis A: General, 2007, 320, 24.
2 Yang S, Kondo J N, Hayashi K, et al. Applied Catalysis A: General, 2004, 277(1), 239.
3 Imlach J A, Glasser L S D, Glasser F P. Cement and Concrete Research, 1971, 15(4), 157.
4 Jeevaratnam J, Glasser F P, Glasser L S D. Journal of the American Ceramic Society, 1964, 47(2), 105.
5 Hosono H, Abe Y. Inorganic Chemistry, 1987, 26, 1192.
6 Hosono H, Hayashi K, Hirano M. Journal of Materials Science, 2007, 42(6), 1872.
7 Fujita S, Suzuki K, Ohkawa M, et al. Chemistry of Materials, 2003, 15(1), 255.
8 Hayashi K, Matsuishi S, Kamiya T. Nature, 2002, 419, 462.
9 Hayashi K, Matsuishi S, Ueda N, et al. Chemistry of Materials, 2003, 15(9), 1851.
10 Sun J Q, Song C F, Ning S, et al. Acta Physico Chimica Sinica, 2009, 25(9), 1713.
11 Song C, Sun J, Qiu S, et al. Chemistry of Materials, 2008, 20(10), 3473.
12 Zhang M, Liu Y, Zhu H, et al. Physical Chemistry Chemical Physics, 2016, 18(28), 18697.
13 Kerrour W, Kabir A, Schmerber G, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(10), 10106.
14 Adachi Y, Kim S W, Kamiya T, et al. Materials Science and Enginee-ring: B,2009, 161(1-3), 76.
15 Inoue Y, Kitano M, Kim S W, et al. ACS Catalysis, 2014, 4(2), 674.
16 Kitano M, Inoue Y, Yamazaki Y, et al. Nature Chemistry, 2012, 4(11), 934.
17 Honkala K, Hellman A, Remediakis I N, et al. Science, 2005, 307(5709), 555.
18 Ebbinghaus S G, Krause H, Syrowatka F. Crystal Growth & Design, 2013, 13(7), 2990.
19 Sushko P V, Shluger A L, Hayashi K, et al. Physical Review Letters, 2003, 91(12), 126401.
20 Kanbara S, Kitano M, Inoue Y, et al. Journal of the American Chemical Society, 2015, 137(45), 14517.
21 Sasao M, Moussaoui R, Kogut D, et al. Applied Physics Express, 2018, 11(6), 066201.
22 Hiraishi M, Kojima K M, Miyazaki M, et al. Physical Review B, 2016, 93(12), 121201.
23 Toda Y, Yanagi H, Ikenaga E, et al. Advanced Materials, 2007, 19(21), 3564.
24 Rand L P, Williams J D.In: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, United States, 2013, pp.4037.
25 Rand L P, Williams J D, Martinez R A. U.S. Patent, US1961702A1,2016.
26 Rand L P, Williams J D, Martinez R A. U.S. Patent,US7892458B2, 2017.
27 Zhao J P, Zhang X, Liu H L, et al. Crystal Research and Technology, 2018, 53(1), 1700201.
28 Sushko P V, Shluger A L, Hirano M, et al. Journal of the American Chemical Society, 2007, 129(4), 942.
29 Bertoni M I, Mason T O, Medvedeva J E, et al. Journal of Applied Phy-sics, 2007, 102(11), 113704.
30 Li F, Zhang X, Liu H L, et al. Journal of the American Ceramic Society, 2019, 102(3), 884.
31 Toda Y, Matsuishi S, Hayashi K, et al.Advanced Materials, 2004,16(8), 685.
32 Zhao J P, Zhang X, Liu H L, et al. Crystal Research and Technology, 2018, 53, 1700201.
33 Miyakawa M, Kim S W, Hirano M, et al. Journal of the American Che-mical Society, 2007, 129(23) 7270.
34 Souma S, Arakane T, Sato T, et al. Journal of the Physical Society of Japan, 2010, 79(10), 103704.
35 Kim S W, Matsuishi S, Nomura T, et al. Nano letters, 2007, 7(5), 1138.
36 Kondo J. In Solid State Physics, 1970, 23, 183.
37 Shimizu K, Ishikawa H, Takao D, et al. Nature, 2002, 419(6907), 597.
38 Christensen N E, Novikov D L. Physical Review B, 2006, 73(22), 224508.
39 Yabuuchi T, Matsuoka T, Nakamoto Y, et al. Journal of the Physical Society of Japan, 2006, 75(8), 083703.
40 Nurse R W, Welch J H, Majumdar A J. British Ceramic Society Transactions,1965, 64(9), 409.
41 Watauchi S, Tanaka I, Hayashi K, et al. Journal of Crystal Growth, 2002, 237, 801.
42 Yoon S G, Kim S W, Hirano M, et al. Crystal Growth and Design, 2008, 8(4), 1271.
43 Kurashige K, Toda Y, Matstuishi S, et al. Crystal Growth and Design, 2006, 6(7), 1602.
44 Matsuishi S, Toda Y, Miyakawa M, et al. Science, 2003, 301(5633), 626.
45 Kim S W, Hayashi K, Hirano M, et al. Journal of the American Ceramic Society, 2006, 89(10), 3294.
46 Miyakawa M, Hayashi K, Hirano M, et al. Advanced Materials, 2003, 15(13), 1100.
47 Toda Y, Miyakawa M, Hayashi K, et al. Thin Solid Films, 2003, 445(2), 309.
48 Miyakawa M, Hiramatsu H, Kamiya T, et al. Journal of Solid State Chemistry, 2010, 183(2), 385.
49 Miyakawa M, Hirano M, Kamiya T, et al. Applied Physics Letters, 2007, 90(18), 182105.
50 Hosono H, Toda Y, Hayashi K, et al. U S Patent, US8377413B2,2015.
51 Li F, Zhang X, Liu H L, et al. Vacuum, 2018, 158, 152.
52 Munir Z A, Anselmi-Tamburini U, Ohyanagi M. Journal of Materials Science, 2006, 41(3), 763.
53 Matsuishi S, Nomura T, Hirano M, et al. Chemistry of Materials, 2009, 21(13), 2589.
54 Matsuishi S, Kim S W, Kamiya T, et al. The Journal of Physical Chemistry, 2008, 112(12), 4753.
55 Sushko P V, Shluger A L, Hayashi K, et al. Physical Review Letters, 2003, 91(12), 126401.
56 Toda Y, Miyakawa M, Hayashi K, et al. Thin Solid Films, 2003, 445, 309.
57 Buchammagari H, Toda Y, Hirano M, et al. Organic Letters, 2007, 9(21), 4287.
58 Li J, Inagi S, Fuchigami T, et al. Electrochemistry Communications, 2014, 44, 45.
59 Hara M, Kitano M, Hosono H. ACS Catalysis, 2017, 7(4), 2313.
60 Watanabe S, Watanabe T, Ito K, et al. Science and Technology of Advanced Materials, 2011, 12(3), 034410.
61 Miyakawa N, Watanabe T, Watanabe S, et al. SID Symposium Digest of Technical Papers, 2011, 42(1), 762.
62 Hung L S, Tang C W, Mason M G. Applied Physics Letters, 1997, 70(2), 152.
63 Lian J R, Luo X, Chen W, et al. Chinese Physics Letters, 2014, 31(11), 118501.
64 Heil H, Steiger J, Karg S, et al. Journal of Applied Physics, 2001, 89(1), 420.
65 Hosono H, Kim J, Toda Y, et al. Proceedings of the National Academy of Sciences, 2017, 14(2), 233.
[1] 李飘, 姚卫星. 镍基单晶合金低周机械疲劳寿命模型评述[J]. 材料导报, 2020, 34(9): 9124-9131.
[2] 张玉, 刘施峰, 李利娟, 祝佳林, 邓超. 晶粒取向及氧化电压对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2020, 34(8): 8010-8013.
[3] 阎森飚, 徐键. CZTS薄膜太阳能电池无镉缓冲层材料的研究进展[J]. 材料导报, 2020, 34(7): 7045-7052.
[4] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[5] 彭增伟, 刘保亭. 外延掺锰铁酸铋薄膜电容器的光电导和光伏效应[J]. 材料导报, 2020, 34(6): 6010-6014.
[6] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[7] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[8] 岳先会,金鑫,谷成. 碳材料促进硝基/卤素取代类有机污染物还原降解的研究进展[J]. 材料导报, 2020, 34(3): 3028-3036.
[9] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[10] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[11] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[12] 黄勇, 冉小龙, 严晓娟. 压缩量对单晶铜冷压焊接接头组织及性能的影响[J]. 材料导报, 2020, 34(12): 12110-12114.
[13] 颜慧琼, 张薇, 王月, 何淞明, 赵芮, 廖月, 陈秀琼. 基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维[J]. 材料导报, 2020, 34(12): 12139-12145.
[14] 周婉秋, 赵玉明, 刘晓安, 杨佳宇, 姜文印, 辛士刚, 康艳红. 1-乙基-3-甲基咪唑硫酸乙酯盐离子液体中采用电化学法合成聚苯胺薄膜及其耐蚀性[J]. 材料导报, 2020, 34(12): 12152-12157.
[15] 王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed