Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19050-19060    https://doi.org/10.11896/cldb.19080131
  无机非金属及其复合材料 |
碳纳米管阵列仿生黏附受静电作用影响的研究进展
孙成祥1,2, 李阳2,3, 徐迟1,2, 陆明月2, 戴振东2,3
1 南京航空航天大学航天学院,南京 210016
2 江苏省仿生功能材料重点实验室,南京 210016
3 南京航空航天大学机电学院,南京 210016
Effect of Electrostatic Interaction on Carbon Nanotube Arrays Bionic Adhesion
SUN Chengxiang1,2, LI Yang2,3, XU Chi1,2, LU Mingyue2, DAI Zhendong2,3
1 College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Jiangsu Provincial Key Laboratory of Bionic Functional Materials, Nanjing 210016, China
3 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 8952KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物进化赋予了壁虎在各种表面上出色的黏附运动能力。受壁虎脚掌的微/纳黏附结构启发研制的仿生黏附材料,其黏附强度已优于壁虎。但壁虎脚掌的其他综合性能,如自清洁性、黏附可控性、可重复性等,仿生黏附材料还不具备,或者差距很大。本文对壁虎脚掌的黏附机制进行了深入分析,为提升仿生黏附材料性能指出方向。
近期研究表明,壁虎黏附过程存在接触/摩擦电现象。通过对接触/摩擦电和黏附力的同步测定,发现壁虎黏附性能得益于范德华力并受静电力作用的影响。这一新的作用机制有助于理解仿生黏附材料性能局限的机理,指导其黏附性能的改进。
在对不同材料接触电效应的研究中,静电作用对材料间相互作用力的影响也越来越多地被发现并量化分析,这些研究成果为仿生黏附材料黏附过程中静电作用的量化分析奠定了理论基础。碳纳米管仿生黏附材料具有优异的力学、电学性质,其接触电效应已得到验证并进行多样化的应用研究,这些研究成果为分析静电作用对碳纳米管仿生黏附材料的影响规律提供实验参考。此外,基于接触电能量转换特性的纳米摩擦发电机(TENG)已成功应用于能量收集,TENG的快速发展为研究接触电的原理和特性提供了实验平台。
本文首先对壁虎黏附机制的近期研究进行梳理,总结范德华力、静电力等作用机制对壁虎黏附的影响规律;结合接触电的近期研究进展,总结静电作用对黏附力的影响规律;系统归纳碳纳米管的黏附性能和接触电现象的研究结果,讨论接触电效应对碳纳米管仿生黏附材料黏附性能的影响;最后结合相关的研究,建立初步模型分析静电作用对碳纳米管仿生黏附材料黏附力的影响。本文期望从静电作用的角度出发,为仿生黏附材料的性能优化提供新的研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙成祥
李阳
徐迟
陆明月
戴振东
关键词:  壁虎黏附  黏附机制  接触电效应  碳纳米管阵列  仿生黏附材料    
Abstract: The evolution of the creature makes the gecko pads have excellent adhesion to different surfaces. Based on the imitation of its micro/nano adhesion structure, the macroscopic adhesion strength of the bionic adhesives is superior to that of the gecko. However, the geckopads not only have excellent adhesion strength, but also have self-cleaning properties, adhesion controllability, repeatability and other advantages. Currently developed bionic adhesives still perform poorly in the face of the actual application environment. This has led to further research on the adhesion mechanism of the gecko pad, thereby guiding the optimization of the performance of the bionic adhesives.
Combined with the established gecko van der Waals adhesion mechanism, recent researches have shown that there is contact electrification (CE) phenomenon in gecko adhesion. Simultaneous quantitative analysis of contact electrification and adhesion forces promotes the understan-ding of the mechanism of the gecko's pad adhesion: the gecko's excellent adhesion performance is not only affected by van der Waals forces, but also by electrostatic forces. The proposed new mechanism may help to understand the limitations of the adhesion properties of bionic adhesives and can guide the improvement of the adhesion properties of bionic adhesives.
In the research of the CE of different materials, the effect of electrostatic interaction on adhesion is increasingly found and quantified. These research results provide a theoretical foundation for the quantitative analysis of the electrostatic interaction during the adhesion of bionic adhesives. Carbon nanotube bionic adhesives have superior mechanical properties, and their contact electrification has been verified and applied in various applications. These researches provide a reference for analyzing the effects of electrostatic interactions on bionic adhesives. In addition, triboelectric nanogenerators (TENG) based on contact electrification energy conversion characteristics have been successfully applied to energy harvesting, and TENG provides a platform for understanding the principles and characteristics of contact electrification.
This review summarizes the research on the gecko adhesion mechanism and the influence of van der Waals force and electrostatic force on gecko adhesion is summarized. Based on the recent research progress of contact electrification, the influence of electrostatic interaction on adhesion is summarized. The researches of adhesion and contact electrification of carbon nanotubes are summarized. The effect of contact electrification on the adhesion of carbon nanotube bionic adhesives is discussed. Finally, combined with relevant research, a preliminary model was established to analyze the effect of electrostatic interaction on the adhesion strength of carbon nanotube bionic adhesives. This review hopes to provide new research approaches for the performance optimization of bionic adhesives from the perspective of electrostatic interaction.
Key words:  gecko adhesion    adhesion mechanism    contact electrification    carbon nanotube arrays    bionic adhesive material
                    发布日期:  2020-11-05
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51705247;51435008);南京航空航天大学研究生创新基地开放基金项目(kfjj20181501);中国博士后科学基金(2020M671474)
通讯作者:  yangli@nuaa.edu.cn; zddai@nuaa.edu.cn   
作者简介:  孙成祥,2017年6月毕业于南京航空航天大学,获得理学学士学位。现为南京航空航天大学航天学院硕士研究生,在戴振东教授的指导下进行研究。目前主要研究领域为碳纳米管仿生黏附材料。
李阳,于2016年在南京航空航天大学材料科学与技术学院获得博士学位,现为南京航空航天大学机电学院博士后。他的主要研究方向为仿生材料、表面摩擦、微纳米结构设计、碳纳米管材料等。
戴振东,南京航空航天大学机电学院教授,博士研究生导师。现任江苏省仿生功能材料重点实验室主任、国家自然基金委员会第十二、十三届信息学部专家评审组成员、国际仿生工程学会中国代表、中德仿生学高层论坛中方主席。固体润滑国家重点实验室学术委员会委员、南京航空航天大学学术委员会委员。Journal of Bionic EngineeringFrictionInternational Journal of Vehicle Autonomous Systems、《科学通报》《摩擦学学报》《南京航空航天大学学报》《润滑与密封》等杂志编委。ASME、STLE、SPIE会员;中国材料研究学会和机械工程学会高级会员。中国微纳米学会微机械设计分会理事、机械工程学会摩擦学常务理事、中国人工智能学会仿脑智能专业委员会、中国材料研究学会纳米材料与器件分会第一届理事会理事、动物学会动物行为分会特邀理事。主要研究领域包括仿生学、轻质材料、生物信息与仿生调控以及仿生机器人。
引用本文:    
孙成祥, 李阳, 徐迟, 陆明月, 戴振东. 碳纳米管阵列仿生黏附受静电作用影响的研究进展[J]. 材料导报, 2020, 34(19): 19050-19060.
SUN Chengxiang, LI Yang, XU Chi, LU Mingyue, DAI Zhendong. Effect of Electrostatic Interaction on Carbon Nanotube Arrays Bionic Adhesion. Materials Reports, 2020, 34(19): 19050-19060.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080131  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19050
1 Russell A P. Journal of Zoology,1975,176(4),437.
2 Autumn K, Liang Y A, Hsieh S T, et al. Nature,2000,405(6787),681.
3 Huber G, Mantz H, Spolenak R, et al. Proceedings of the National Aca-demy of Sciences,2005,102(45),16293.
4 Ruibal R, Ernst V. Journal of Morphology,1965,117(3),271.
5 Autumn K, Peattie A M. Integrative and Comparative Biology,2002,42(6),1081.
6 Kim T I, Jeong H E, Suh K Y, et al. Advanced Materials,2009,21(22),2276.
7 Bartlett M D, Croll A B, King D R, et al. Advanced Materials,2012,24(8),1078.
8 Ge L, Sethi S, Ci L, et al. Proceedings of the National Academy of Sciences,2007,104(26),10792.
9 Xu M, Du F, Ganguli S, et al. Nature Communications,2016,7,13450.
10 Autumn K. American Scientist,2006,94(2),124.
11 Liang Y A, Autumn K, Hsieh S T, et al. Adhesion force measurements on single gecko setae, Clarendon Press, UK,2000.
12 Prowse M S, Wilkinson M, Puthoff J B, et al. Acta Biomaterialia,2011,7(2),733.
13 Kim T W, Bhushan B. Journal of the Royal Society Interface,2007,5(20),319.
14 Autumn K, Sitti M, Liang Y A, et al. Proceedings of the National Academy of Sciences,2002,99(19),12252.
15 Puthoff J B, Prowse M S, Wilkinson M, et al. Journal of Experimental Biology,2010,213(21),3699.
16 Chen B, Gao H. International Journal of Applied Mechanics,2010,2(1),1.
17 Prevenslik T. Tribology in Industry,2009,31(1-2),61.
18 Izadi H, Stewart K M, Penlidis A. Journal of the Royal Society Interface,2014,11(98),20140371.
19 Russell A P, Stark A Y, Higham T E. Integrative and Comparative Biology,2019,59(1),101.
20 Izadi H, Zandieh A, Penlidis A. Kirk-Othmer Encyclopedia of Chemical Technology, DOI: 10.1002/0471238961.koe00034.
21 Song Y, Wang Z, Zhou J, et al. Friction,2018,6(1),75.
22 Alibardi L. Protoplasma,2018,255(6),1785.
23 Lowell J, Rose-Innes A C. Advances in Physics,1980,29(6),947.
24 Mccarty L S, Whitesides G M. Angewandte Chemie International Edition,2008,47(12),2188.
25 Harper W R. Contact and frictiond electrification,Clarendon Press, UK,1967.
26 Latham J. British Journal of Applied Physics,1963,14(8),488.
27 Martin A. Proceedings of the Physical Society,1941,53(2),186.
28 Wong J, Kwok P C L, Chan H. Chemical Engineering Science,2015,125,225.
29 Wang Z L. ACS Nano,2013,7(11),9533.
30 Elsdon R, Mitchell F. Journal of Physics D: Applied Physics,1976,9(10),1445.
31 Cole J J, Barry C R, Knuesel R J, et al. Langmuir,2011,27(11),7321.
32 Baytekin H T, Baytekin B, Soh S, et al. Angewandte Chemie Internatio-nal Edition,2011,50(30),6766.
33 Baytekin H T, Patashinski A Z, Branicki M, et al. Science,2011,333(6040),308.
34 Zhou Y S, Liu Y, Zhu G, et al. Nano letters,2013,13(6),2771.
35 Wang Z L. Materials Today,2017,20(2),74.
36 Fan F, Tian Z, Wang Z L. Nano Energy,2012,1(2),328.
37 Yu B, Yu H, Huang T, et al. Nano Energy,2018,48,464.
38 Dong K, Wu Z, Deng J, et al. Advanced Materials,2018,30(43),1804944.
39 Li Q, Cho I H, Biswas R, et al. Nano Letters,2019,19(2),850.
40 Zou H, Zhang Y, Guo L, et al. Nature Communications,2019,10(1),1427.
41 Liu C, Bard A J. Chemical Physics Letters,2009,480(4-6),145.
42 Lacks D J, Sankaran R M. Journal of Physics D: Applied Physics,2011,44(45),453001.
43 Wang S, Zi Y, Zhou Y S, et al. Journal of Materials Chemistry A,2016,4(10),3728.
44 Xu C, Zi Y, Wang A C, et al. Advanced Materials,2018,30(15),1706790.
45 Xu C, Wang A C, Zou H, et al. Advanced Materials,2018,30(38),1803968.
46 Lin S, Xu L, Xu C, et al. Advanced Materials,2019,31(17),1808197.
47 Zhang X, Chen L, Jiang Y, et al. Chemistry of Materials,2019,31(5),1473.
48 Pan S, Zhang Z. Friction,2019,7(1),2.
49 Wang Z L, Wang A C. Materials Today,2019,30(1),34.
50 Zhang J, Rogers F J, Darwish N, et al. Journal of the American Chemical Society,2019,141(14),5863.
51 Zhang W, Diao D, Sun K, et al. Nano Energy,2018,48,456.
52 Pandey R K, Kakehashi H, Nakanishi H, et al. The Journal of Physical Chemistry C,2018,122(28),16154.
53 Mcguiggan P M. Langmuir,2008,24(8),3970.
54 Gady B, Reifenberger R, Rimai D S, et al. Langmuir,1997,13(9),2533.
55 Izadi H, Golmakani M, Penlidis A. Soft Matter,2013,9(6),1985.
56 Yang W, Wang X, Li H, et al. Nano Energy,2018,51,241.
57 Yang W, Wang X, Li H, et al. Nano Energy,2019,57,41.
58 Geim A K, Dubonos S V, Grigorieva I V, et al. Nature Materials,2003,2(7),461.
59 Del Campo A, Greiner C, Alvarez I, et al. Advanced Materials,2007,19(15),1973.
60 Gorb S, Varenberg M, Peressadko A, et al. Journal of the Royal Society Interface,2006,4(13),271.
61 Jeong H E, Lee J, Kim H N, et al. Proceedings of the National Academy of Sciences,2009,106(14),5639.
62 Li Y, Ji K, Duan Y, et al. Coatings,2017,7(12),221.
63 Rao R, Pint C L, Islam A E, et al. ACS Nano,2018,12(12),11756.
64 Liu M, An H, Kumamoto A, et al. Carbon,2019,146,413.
65 Li Y, Zhang H, Yao Y, et al. RSC Advances,2015,5(58),46749.
66 Maeno Y, Ishikawa A, Nakayama Y. Applied Physics Express,2010,3(6),65102.
67 Bhushan B, Galasso B, Bignardi C, et al. Nanotechnology,2008,19(12),125702.
68 Strus M C, Zalamea L, Raman A, et al. Nano Letters,2008,8(2),544.
69 Ishikawa M, Harada R, Sasaki N, et al. Physical Review B,2009,80(19),193406.
70 Ishikawa M, Harada R, Sasaki N, et al. Applied Physics Letters,2008,93(8),83122.
71 Yurdumakan B, Raravikar N R, Ajayan P M, et al. Chemical Communications,2005(30),3799.
72 Zhao Y, Tong T, Delzeit L, et al. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena,2006,24(1),331.
73 Qu L, Dai L. Advanced Materials,2007,19(22),3844.
74 Maeno Y, Nakayama Y. Applied Physics Letters,2009,94(1),12103.
75 Qu L, Dai L, Stone M, et al. Science,2008,322(5899),238.
76 Chen B, Zhong G, Goldberg Oppenheimer P, et al. ACS Applied Mate-rials & Interfaces,2015,7(6),3626.
77 De Volder M F, Tawfick S H, Baughman R H, et al. Science,2013,339(6119),535.
78 Zhang X, Lu W, Zhou G, et al. Advanced Materials,2019,32(5),1902028.
79 Wu C, Wang A C, Ding W, et al. Advanced Energy Materials,2019,9(1),1802906.
80 Wang Z L. Faraday Discussions,2015,176,447.
81 Bradford P D, Wang X, Zhao H, et al. Carbon,2011,49(8),2834.
82 Oguntoye M, Johnson M, Pratt L, et al. ACS Applied Materials & Interfaces,2016,8(41),27454.
83 Oguntoye M, Oak S, Pashazanusi L, et al. Electrochimica Acta,2017,236,408.
84 Oguntoye M. Applying vertically aligned carbon nanotubes in energy harvesting and energy storage. Ph.D. Thesis, Tulane University, USA,2017.
85 Wang H, Shi M, Zhu K, et al. Nanoscale,2016,8(43),18489.
86 Xu Y, Chen P, Zhang J, et al. Angewandte Chemie International Edition,2017,56(42),12940.
87 Yu X, Pan J, Zhang J, et al. Journal of Materials Chemistry A,2017,5(13),6032.
88 Li Y, Tian H, Zhao H, et al. Nanoscale,2018,10(2),526.
89 Javadi M, Heidari A, Darbari S. Current Applied Physics,2018,18(4),361.
90 Kim H S, Kim D Y, Kwak J H, et al. Nano Energy,2019,56,338.
91 Paria S, Si S K, Karan S K, et al. Journal of Materials Chemistry A,2019,7(8),3979.
92 Fan Y J, Meng X S, Li H Y, et al. Advanced Materials,2017,29(2),1603115.
93 Dhanabalan S C, Dhanabalan B, Chen X, et al. Nanoscale,2019,11(7),3046.
94 Israelachvili J N. Intermolecular and surface forces, Academic Press, UK,2015.
95 Lee S, Sung W, Kim W, et al. Japanese Journal of Applied Physics,2008,47(4R),2339.
96 Lee S, Kim W, Kim Y. Physica E: Low-dimensional Systems and Nanostructures,2010,43(1),405.
[1] 张圆圆, 杨建森. 脂肪酸相变材料的封装制备及热工性质[J]. 材料导报, 2020, 34(16): 16144-16148.
[2] 于嫚. 聚焦钙钛矿光伏器件中慢速动力学机制研究进展[J]. 材料导报, 2020, 34(15): 15059-15062.
[3] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[4] 李泽, 赵芳, 王建江, 高海涛. PVP表面修饰羰基铁/CoFe2O4核壳纳米结构的制备及低频吸波机理[J]. 材料导报, 2020, 34(14): 14027-14033.
[5] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[6] 胡明玉, 王红英, 刘子航, 胡裕倩. 抑霉菌泥炭藓/硅藻土复合调湿材料的研究[J]. 材料导报, 2020, 34(14): 14051-14056.
[7] 曹明星, 马立文, 王志宏. 碲属线性巨磁阻材料研究进展[J]. 材料导报, 2020, 34(13): 13131-13138.
[8] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[9] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[10] 张玉, 刘施峰, 李利娟, 祝佳林, 邓超. 晶粒取向及氧化电压对阳极氧化Ta2O5纳米管形貌的影响[J]. 材料导报, 2020, 34(8): 8010-8013.
[11] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[12] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[13] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[14] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[15] 王学凯, 王金淑, 杜玉成, 吴俊书, 腾威利, 车海冰, 靳翠鑫. 硅藻土功能化及其应用[J]. 材料导报, 2020, 34(3): 3017-3027.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed