Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14009-14015    https://doi.org/10.11896/cldb.19070034
  无机非金属及其复合材料 |
介孔氮化铌粉体的制备及电化学性能
崔帅1, 2, 呼世磊1, 2, 吕东风1, 2, 崔燚1, 2, 魏颖娜1, 2, 魏恒勇1, 2, 卜景龙1, 2, 陈越军1, 2
1 华北理工大学材料科学与工程学院, 唐山 063210
2 河北省无机非金属材料重点实验室, 唐山 063210
Preparation and Electrochemical Performance of Mesoporous Niobium Nitride Powders
CUI Shuai1, 2, HU Shilei1, 2, LYU Dongfeng1, 2, CUI Yi1, 2, WEI Yingna1, 2, WEI Hengyong1, 2, BU Jinglong1, 2, CHEN Yuejun1, 2
1 College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
2 Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, Tangshan 063210, China
下载:  全 文 ( PDF ) ( 6059KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以五氯化铌(NbCl5)为铌源,P123为模板剂,氰胺为结构稳定剂,采用溶剂热法制备Nb2O5前驱体粉体,然后将Nb2O5粉体在800 ℃氨气中进行还原氮化反应制备介孔氮化铌粉体。采用XRD、XPS、SEM、BET和TEM表征了介孔粉体的物相、形貌及孔结构。结果表明,粉体为立方Nb4N5相,呈近似球形颗粒状。从XPS分析中可以看出,粉体中主要含有Nb、N和O三种元素,并且在Nb元素的窄谱中,结合能为204.6 eV、207.2 eV和209.8 eV对应的结合键分别为Nb3+-N、Nb5+-N和Nb5+-O,这表明氮化铌粉体中有Nb3+和Nb5+两种价态,且Nb5+峰强高于Nb3+,说明铌多以Nb5+形式存在。粉体比表面积为39 m2·g-1,孔径为3~5 nm的孔结构比例较高,同时在8~15 nm范围也存在较多的孔道结构。采用CV、GCD及EIS等测试其电化学性能,结果表明,CV曲线中并没有出现明显的氧化还原峰,主要表现为双电层特征,其储能主要受电极材料表面电荷传递过程控制。样品在电流密度为10 mA·g-1时的比电容为90 F·g-1,样品的内在阻抗为0.82 Ω,电荷转移阻抗为0.22 Ω,当功率密度为480 W·kg-1时,能量密度为7.2 Wh·kg-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔帅
呼世磊
吕东风
崔燚
魏颖娜
魏恒勇
卜景龙
陈越军
关键词:  Nb4N5粉体  介孔  电化学  还原氮化    
Abstract: Nb2O5 precursor powder was prepared by solvothermal method, NbCl5 as niobium source and P123 as the pore-forming agent, cyanamide as the structural stabilizer. The mesoporous niobium nitride powder was synthesized via nitrogen reduction of the mesoporous Nb2O5 powder at 800 ℃ in NH3.The phase and morphology were characterized by XRD, XPS, SEM, BET and TEM. The results show that the synthesized nio-bium nitride powder is cubic Nb4N5 phase, which is similar to spherical particles.It can be seen from the XPS analysis that the powder mainly contains three elements: Nb, N and O, and in the narrow spectrum of Nb elements, the binding energy is 204.6 eV, 207.2 eV and 209.8 eV, and the corresponding bonds are Nb3+-N, Nb5+-N and Nb5+-O, respectively, indicating that there are two valence states of Nb3+ and Nb5+ in the nitride powders. And the Nb5+ peak intensity is higher than Nb3+, indicating that the niobium is present in the form of Nb5+. The specific surface area of the powder is 39 m2·g-1, the pore structure in the range of 3—5 nm of powders has a high proportion, and there are also many pore structures in the range of 8—15 nm. The electrochemical properties were tested by CV, GCD and EIS. The results show that there is no obvious redox peak in CV curve, which is mainly characterized by double layer. The energy storage of niobium nitride powders is mainly controlled by the charge transfer process on the electrode surface. The specific capacitance is 90 F·g-1 when the current density is 10 mA·g-1. The internal resistance is 0.82 Ω, and the ion diffusion impedance is 0.22 Ω. When the power density is 480 kW·kg-1, the energy density is 7.2 Wh·kg-1.
Key words:  Nb4N5 powders    mesoporous    electrochemistry    reduction nitridation
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TQ135.1+2  
基金资助: 国家自然科学基金(51272066);河北省自然科学基金(E2019209474)
作者简介:  崔帅,于2017年9月至2020年3月在华北理工大学攻读硕士学位,主要从事新型高温结构材料领域的研究。
魏恒勇,2010年9月毕业于同济大学,获得材料学博士学位。研究方向包括仿生材料,耐高温隔热材料,超级电容器,表面等离激元及吸波材料。
引用本文:    
崔帅, 呼世磊, 吕东风, 崔燚, 魏颖娜, 魏恒勇, 卜景龙, 陈越军. 介孔氮化铌粉体的制备及电化学性能[J]. 材料导报, 2020, 34(14): 14009-14015.
CUI Shuai, HU Shilei, LYU Dongfeng, CUI Yi, WEI Yingna, WEI Hengyong, BU Jinglong, CHEN Yuejun. Preparation and Electrochemical Performance of Mesoporous Niobium Nitride Powders. Materials Reports, 2020, 34(14): 14009-14015.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070034  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14009
1 Conway B E. Electrochemical supercapacitors.Plenum Press, USA,1999.
2 Ktz R, Carlen M. Electrochimica Acta, 2000, 45(15),2483.
3 Shang C Q. Core-shell fibers prepare by coaxal electrospinning for high-performance capacitors. Master's Thesis, Qingdao University of Science & Technology, China, 2012(in Chinese).
商超群. 同轴静电纺丝制备芯壳结构高能电容器电极材料及研究.硕士学位论文,青岛科技大学, 2012.
4 Cui H, Zhu G, Liu X, et al. Advanced Science, 2015, 2(12),1500126.
5 Gao B. Applied Surface Science, 2016, 383,57.
6 Dong S, Chen X, Gu L, et al. ACS Applied Materials and Interfaces, 2011, 3(1),93.
7 Wei H. Chemical Journal of Chinese Universities, 2017, 38(3),355.
8 Alfonso J E, Buitrago J, Torres J, et al. Journal of Materials Science, 2010, 45(20),5528.
9 Jouve G, Severac C, Cantacuzene S. Thin Solid Films, 1996, 287(1-2),146.
10 Baunemann A, Bekermann D, Thiede T B, et al. Dalton Transactions, 2008, 28(28), 3715.
11 Kos'cielska B. Journal of Non-Crystalline Solids, 2008, 354(14),1549.
12 Shang C Q, Yang H M, Zhou X H, et al. Electrochemistry, 2012(18),257(in Chinese).
商超群, 杨海燕, 周新红, 等. 电化学, 2012(18),257.
13 Mi J, Li W C. Chinese Journal of Power Sources, 2014(7),1394(in Chinese).
米娟,李文翠. 电源技术, 2014(7),1394.
14 Liu P, Wei H Y, Bu J L, et al. Materials Reports A:Review Papers, 2017,31(11),146(in Chinese).
刘盼, 魏恒勇, 卜景龙, 等. 材料导报:综述篇, 2017,31(11),146.
15 Jiang L, Gao L. Journal of the American Ceramic Society, 2006, 89(1),156.
16 Zolfaghari A, Ataherian F, Ghaemi M, et al. Electrochimica Acta, 2007, 52(8),2806.
17 Chmiola J, Largeot C, Taberna P, et al. Angewandte Chemie (International Edition), 2008, 47(18),3440.
18 Liu M Y, Yang T, Chen J H, et al. Journal of Alloys & Compounds, 2017, 692,605.
19 Saravanakumar B, Purushothaman K K, Muralidharan G. ACS Applied Materials & Interfaces, 2012, 4(9),4484.
20 Xia X H, Chao D L, Zhang Y Q, et al. Small, 2016, 12(22),3048.
21 Xie Y B, Wang Y, Du H X. Materials Science and Engineering B, 2013, 178(20),1443.
22 Hao S, Binbin W, Dongfang Z, et al. Materials Letters, 2018, 229,17.
23 Lu X, Wang G, Zhai T, et al. Nano Letters, 2012, 12(10),5376.
[1] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[2] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[3] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[4] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[5] 邓安强, 罗永春, 王浩, 赵磊, 郑坤. 新型无镁YNi3.5-xAlx(x=0~0.3)储氢合金的结构和电化学性能[J]. 材料导报, 2020, 34(14): 14110-14115.
[6] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[7] 刘盼, 朱彬, 吕东风, 崔帅, 崔燚, 魏颖娜, 魏恒勇, 卜景龙. 多级结构CoNiO2/TiN复合纤维的制备及电化学性能[J]. 材料导报, 2020, 34(10): 10024-10029.
[8] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[9] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[10] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[11] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[12] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[13] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[14] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[15] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed