Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 20080238-9    https://doi.org/10.11896/cldb.20080238
  金属与金属基复合材料 |
基于金属有机框架材料的氧还原催化剂研究进展
任雨峰, 栾伟玲, 姜滔
华东理工大学机械与动力工程学院,承压系统与安全教育部重点实验室, 上海 200237
Research Progress of Oxygen Reduction Catalysts Based on Metal-Organic Framework Materials
REN Yufeng, LUAN Weiling, JIANG Tao
Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
下载:  全 文 ( PDF ) ( 5879KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 燃料电池具有发电效率高、污染噪音小、运行可靠等优势,能够作为新能源汽车的主要动力来源,因此受到各国的广泛关注。氧还原反应(ORR)作为燃料电池中重要的电化学反应,对催化剂有较高的要求,然而目前广泛使用的Pt催化剂存在高成本和低耐久性的问题,限制了新能源汽车的发展。采用非Pt催化剂或低Pt催化剂可以实现在性能不变的前提下降低成本,是推进燃料电池汽车商业化应用的关键。通过金属有机框架材料(MOF)研制的无金属催化剂和过渡金属催化剂可完全替代贵金属Pt催化剂,其中利用ZIF系列制备的MOF基Fe系和Co系催化剂是ORR研究的热点。受非贵金属催化剂的启发,低Pt催化剂通过MOF实现负载或合金化,进一步提升了低Pt催化剂的电化学活性及耐久性。本文就近期基于MOF材料的ORR催化剂研究进展进行综述,介绍了无金属催化剂、过渡金属催化剂和贵金属催化剂的研究现状及面临的挑战,为获得性能优越的ORR催化剂提供了技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任雨峰
栾伟玲
姜滔
关键词:  氧还原反应  催化剂  金属有机框架材料  燃料电池    
Abstract: With the advantages of high power generation efficiency, low pollution and noise, and reliable operation, fuel cells have attracted widespread attention from various countries as they can be used as the main power source for new energy vehicles. Oxygen reduction reaction (ORR), as an important electrochemical reaction in fuel cells, has higher requirements on catalysts. However, the high cost and low durability of Pt catalyst used widely restrict the development of new energy vehicles. Non-Pt catalysts or low-Pt catalysts can reduce costs while maintaining the same performance, which is the key to promoting the commercial application of fuel cell vehicles. Metal-free catalysts and transition metal catalysts prepared by metal-organic framework materials (MOF) can completely replace precious metal Pt catalysts. Among them, the Fe-based and Co-based MOF catalysts developed using the ZIF series are the focus of ORR research. In addition, inspired by non-precious metal catalysts, low-Pt catalysts are supported or alloyed through MOF, which further improves low-Pt catalysts electrochemical activity and durability. This paper reviews the recent research progress of ORR catalysts based on MOF materials, introduces the research status and challenges of metal-free catalysts, transition metal catalysts and precious metal catalysts, and provides technical support for obtaining ORR catalysts with superior performance.
Key words:  oxygen reduction reaction    catalyst    metal-organic framework material    fuel cells
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TM911.4  
基金资助: 国家自然科学基金(51475166);上海汽车工业科技发展基金(1801)
通讯作者:  luan@ecust.edu.cn   
作者简介:  任雨峰,2018年6月毕业于辽宁石油化工大学,获得工学学士学位。现为华东理工大学机械与动力工程学院硕士研究生,在栾伟玲教授的指导下进行研究。目前主要研究领域为燃料电池氧还原反应催化剂。
栾伟玲,华东理工大学机械与动力工程学院教授、博士研究生导师。1998年7月于中国科学院上海硅酸盐研究所获得工学博士学位。1998年8月至2000年9月在中国科学院上海硅酸盐研究所高性能陶瓷与超微结构国家重点实验室工作。目前主要研究方向包括:新型能源与传感技术、纳米技术应用。在材料领域发表相关研究论文120余篇,包括Applied Energy、Nanoscale、Journal of Materials Che-mistry C等。
引用本文:    
任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
REN Yufeng, LUAN Weiling, JIANG Tao. Research Progress of Oxygen Reduction Catalysts Based on Metal-Organic Framework Materials. Materials Reports, 2022, 36(19): 20080238-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080238  或          http://www.mater-rep.com/CN/Y2022/V36/I19/20080238
1 Gong R L,Li W Q. Business News, 2020(10), 23(in Chinese).
巩若琳, 李文琦. 商讯, 2020(10), 23.
2 Li J,Feng X,Wei Z D. Electrochemistry, 2018, 24(6), 589(in Chinese).
李静, 冯欣, 魏子栋.电化学, 2018, 24(6), 589.
3 Du L,Xing L X,Zhang G X,et al. Carbon, 2020, 156, 77.
4 Wang J,Wei Z D. Acta Physico Chimica Sinica, 2017, 33(5), 886 (in Chinese).
王俊, 魏子栋. 物理化学学报, 2017, 33(5), 886
5 Yaghi O M, Li G, Li H S. Nature, 1995, 378(6558), 703.
6 Yaghi O M, Li H. Journal of the American Chemical Society, 1995, 117(41), 10401.
7 Li H, Eddaoudi M, Groy T Let al. Journal of the American Chemical So-ciety, 1998, 120(33), 8571.
8 Li H, Eddaoudi M, O'keeffe M,et al. Nature, 1999, 402(6759), 276.
9 Park K S, Ni Z, Côté A P, et al. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27), 10186.
10 Banerjee R,Phan A,Wang B,et al. Science, 2008, 319(5865), 939.
11 Yang L, Zeng X, Wang W,et al. Advanced Functional Materials, 2018, 28(7), 1704537.
12 Chen Y Z, Zhang R, Jiao L,et al. Coordination Chemistry Reviews, 2018, 362, 1.
13 Gong K P, Du F, Xia Z H,et al. Science, 2009, 323(5915), 760.
14 Zhong G Y,Wang H J,Yu H, et al. Acta Chimica Sinica, 2017, 75(10), 943 (in Chinese).
钟国玉, 王红娟, 余皓, 等. 化学学报, 2017, 75(10), 943.
15 Liu B, Shioyama H, Akita T,et al. Journal of the American Chemical Society, 2008, 130(16), 5390.
16 Zhang P, Sun F, Xiang Z H,et al. Energy & Environmental Science, 2014, 7(1), 442.
17 Zhang L J, Su Z X, Jiang F L,et al. Nanoscale, 2014, 6(12), 6590.
18 Guo D, Shibuya R, Akiba C,et al. Science, 2016, 351(6271), 361.
19 Yang L, Xu G, Ban J, et al. Journal of Colloid Interface Science, 2019, 535, 415.
20 Li J S, Li S L, Tang Y J, et al. Scientific Reports, 2014, 4, 5130.
21 Li J, Chen Y, Tang Y, et al. Journal of Materials Chemistry A, 2014, 2(18), 6316.
22 Fu Y A, Huang Y, Xiang Z,et al. European Journal of Inorganic Chemistry, 2016, 2016(13-14),2100.
23 Jiang R, Liu T X, Wu R J,et al. ACS Applied Materials & Interfaces, 2020, 12(6), 7270.
24 Liu H,Yang D H,Wang X Y. et al. Chinese Journal of Inorganic Chemistry, 2019, 35(11), 1921 (in Chinese) .
刘虎, 杨东辉,王许云,等.无机化学学报,2019, 35(11), 1921.
25 Singh H, Zhuang S Q, Nunna B B, et al. Catalysts, 2018, 8(12), 12.
26 Shi P C, Yi J D, Liu T T, et al. Journal of Materials Chemistry A, 2017, 5(24), 12322.
27 Xiao M, Chen Y, Zhu J, et al. Journal of the American Chemical Society, 2019, 141(44), 17763.
28 Deng X, Chen H Q,Hu Y,et al. Electrochemistry, 2018, 24(3), 235 (in Chinese).
邓昕, 陈亨权, 胡野. 电化学, 2018, 24(3), 235.
29 Luo Y, Zhang J, Chen Y,et al. Journal of Electroanalytical Chemistry, 2019, 847,113191.
30 Zhang X, Huang X, Hu W, et al. International Journal of Hydrogen Energy, 2019, 44(50), 27379.
31 Gao S Y, Fan B F, Feng R, et al. Nano Energy, 2017, 40, 462.
32 Yang H B, Miao J, Hung S F, et al.Science Advances, 2016, 2(4), e1501122.
33 Wang X J, Zhang H G, Lin H H,et al. Nano Energy, 2016, 25, 110.
34 Lai Q X, Zheng L R, Liang Y Y,et al. ACS Catalysis, 2017, 7(3), 1655.
35 Zhang H G, Hwang S, Wang M Y, et al. Journal of the American Chemical Society, 2017, 139(40), 14143.
36 Martinez U, Babu S K, Holby E F, et al. Advanced Materials, 2019, 31(31), 20.
37 Zhang H, Chung H T, Cullen D A,et al. Energy & Environmental Science, 2019, 12(8), 2548.
38 Xiao F, Xu G L, Sun C J, et al. Nano Energy, 2019, 61, 60.
39 Wang H, Grabstanowicz L R, Barkholtz H M, et al. ACS Energy Letters, 2019, 4(10), 2500.
40 Jiang T, Luan W L, Ren Y F,et al. Microporous and Mesoporous Mate-rials, 2020, 305, 110382.
41 Li J K, Bruller S, Sabarirajan D C,et al. ACS Applied Energy Materials, 2019, 2(10), 7211.
42 Li Z Y, Liang X, Gao Q M,et al. Carbon, 2019, 154, 466.
43 Lv X X, Xue X, Gan X Y,et al. Chemistry-an Asian Journal, 2020, 15(3), 432.
44 Yang L M, Shao Z G. RSC Advances, 2019, 9(72), 42236.
45 Ma Y M, Luo S S, Tian M H,et al. Journal of Power Sources, 2020, 450, 227659.
46 Al-Zoubi T, Zhou Y, Yin X,et al. Journal of the American Chemical So-ciety, 2020, 142(12), 5477.
47 Huang J W, Chen Y B, Liu X,et al. Chemical Communications, 2019, 55(48), 6930.
48 Choi C H, Lim H K, Chung M W, et al. Energy & Environmental Science, 2018, 11(11), 3176.
49 Jasinski R. Nature, 1964, 201(4925), 1212.
50 Wang X J, Zhou J W, Fu H,et al. Journal of Materials Chemistry A, 2014, 2(34), 14064.
51 Xia W, Zhu J H, Guo W H, et al. Journal of Materials Chemistry A, 2014, 2(30), 11606.
52 Wang Z J, Lu Y Z, Yan Y, Larissa, et al. Nano Energy, 2016, 30, 368.
53 Liu C, Wang J, Li J S, et al. Journal of Materials Chemistry A, 2017, 5(3), 1211.
54 Li Z H, Shao M F, Zhou L, et al. Nano Energy, 2016, 25, 100.
55 Yuan S, Weng M, Liu D, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(23), 18912.
56 Xia B Y, Yan Y, Li N,et al. Nature Energy, 2016, 1, 8.
57 Wang X X, Cullen D A, Pan Y T, et al. Advanced Materials, 2018, 30(11), 11.
58 He Y, Hwang S, Cullen D A,et al. Energy & Environmental Science, 2019, 12(1), 250.
59 Sun W, Du L, Tan Q,et al. Applied Materials & Interfaces, 2019, 11(44), 41258.
60 Abdelkader-Fernández V K, Fernandes D M, Balula S S, et al. ACS Applied Energy Materials, 2019, 2(3), 1854.
61 Chen L, Li Y, Xu N, et al. Carbon, 2018, 132, 172.
62 Peera S G, Balamurugan J, Kim N H, et al. Small, 2018, 14(19), 1800441.
63 Zhao K M, Liu S Q, Ye G Y, et al. Chemsuschem, 2020, 13(6), 1556.
64 Wang T, Yang R, Shi N, et al. Small, 2019, 15(43), e1902410.
65 Jahan M, Liu Z L, Loh K P. Advanced Functional Materials, 2013, 23(43), 5363.
66 Wang Z, Jin H, Meng T,et al. Advanced Functional Materials, 2018, 28(39), 1802596.
67 Mao J J, Yang L F, Yu P, et al. Electrochemistry Communications, 2012, 19, 29.
68 Gonen S, Lori O, Cohen-Taguri G, et al. Nanoscale, 2018, 10(20), 9634.
69 Ji L Q, Yang J, Zhang Z Y, et al. Crystal Growth & Design, 2019, 19(5), 2991.
70 Dong Z, Liu G L, Zhou S C, et al. ChemCatChem, 2018, 10(23), 5475.
71 Nan H X, Dang D, Tian X L. Progress in Chemical Industry, 2018, 37(11), 4294 (in Chinese).
南皓雄, 党岱, 田新龙. 化工进展, 2018, 37(11), 4294.
72 Wu W, Zhang Z Y, Lei Z, et al. ACS Applied Materials & Interfaces, 2020, 12(9), 10359.
73 Wang E K, Gu W L, Shang C S, et al. Chemelectrochem, 2017, 4(11), 2814.
74 Du N N, Wang C M, Long R, et al. Nano Research, 2017, 10(9), 3228.
75 Zhang L, Zhang X F, Chen X L,et al. Journal of Colloid and Interface Science, 2019, 536, 556.
76 Chong L N, Wen J G, Kubal J,et al. Science, 2018, 362(6420), 1276.
77 Wang X X, Hwang S Y, Pan Y T, et al. Nano Letters, 2018, 18(7), 4163.
78 Ying J, Li J, Jiang G P, et al. Applied Catalysis B: Environmental, 2018, 225, 496.
79 Shi X, Iqbal N, Kunwar S S, et al. International Journal of Hydrogen Energy, 2018, 43(6), 3520.
81 Hanif S, Shi X, Iqbal N, et al. Applied Catalysis B: Environmental, 2019, 258,117947.
[1] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[2] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[3] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[4] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[5] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[6] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[7] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[8] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[9] 王明飞, 陈鹏, 陶雷, 薛宇, 刘敬业, 王学谦, 马懿星, 王郎郎, 李佳奇. 有机硫水解催化剂研究进展[J]. 材料导报, 2022, 36(17): 20080196-9.
[10] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[11] 张立昌, 蔡超, 谭金婷, 周江峰, 王园, 潘牧. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 21030086-7.
[12] 高助威, 李小高, 刘钟馨, 饶健民. 氢燃料电池汽车的研究现状及发展趋势[J]. 材料导报, 2022, 36(14): 21060046-8.
[13] 王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 20120169-9.
[14] 陆强, 吴亚昌, 徐明新, 曲艳超, 王涵啸, 裴鑫琦, 欧阳昊东. 抗高温失活SCR脱硝催化剂研究进展[J]. 材料导报, 2022, 36(13): 20090242-9.
[15] 严蛟, 邝旻翾, 胡宏林, 孔磊, 马慧玲, 张秀芹. 间苯二酚-甲醛基酚醛/碳气凝胶微观结构调控研究进展[J]. 材料导报, 2022, 36(12): 20090342-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed