Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 20100295-9    https://doi.org/10.11896/cldb.20100295
  无机非金属及其复合材料 |
基于水泥基材料的CO2矿化封存利用技术综述
李林坤1,2, 刘琦1, 黄天勇3, 李扬3, 彭勃1
1 中国石油大学(北京)非常规油气科学技术研究院,温室气体封存与石油开采利用北京市重点实验室,北京 102249
2 海油总节能减排监测中心有限公司,天津 300457
3 北京建筑材料科学研究总院有限公司,固废资源化利用与节能建材国家重点实验室,北京 100041
Review on CO2 Mineralization, Sequestration and Utilization of Cement-based Materials
LI Linkun1,2, LIU Qi1, HUANG Tianyong3, LI Yang3, PENG Bo1
1 Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, the Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
2 CNOOC Energy Conservation & Pollution Reduction Monitoring Center Co., Ltd., Tianjin 300457, China
3 State Key Laboratory of Green Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
下载:  全 文 ( PDF ) ( 3923KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了减缓水泥行业排放的CO2对全球气候变化的影响,基于二氧化碳捕集封存与利用(CCUS)技术,通过CO2与水泥基材料中含Ca2+和Mg2+的胶凝材料及其水化产物之间的矿化反应,将CO2以无机碳酸盐形式封存在水泥基材料中。在实现封存CO2的同时,因其矿化产物(主要为碳酸钙和无定形SiO2)具有较好的稳定性、填充效应以及成核效应,CO2矿化处理后水泥基材料的力学性能、耐久性得到有效提高,短时间内获得了具有高性能的水泥基材料。本文总结了现阶段CO2在水泥基材料中矿化封存利用的研究进展,从混凝土矿化养护过程中不同胶凝材料与CO2的反应特性、再生骨料CO2矿化强化处理对其微观结构和性能影响以及水泥基材料矿化封存CO2的能力等方面进行了论述,并对该技术未来的发展和研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李林坤
刘琦
黄天勇
李扬
彭勃
关键词:  二氧化碳捕集封存与利用  矿化封存  水泥基材料  二氧化碳矿化养护  再生骨料    
Abstract: In order to mitigate the negative impact of CO2 emissions from cement production on the global climate change, CO2 was sequestered in cement-based materials in the form of inorganic carbonate by utilizing the mineralization reaction between CO2 and cementitious materials containing Ca2+ and Mg2+ and their hydration products based on carbon capture, storage and utilization (CCUS) technology. Meanwhile, due to the good stability, filling effect and nucleation effect of its mineralized products (mainly calcium carbonate and amorphous SiO2), the mechanical properties and durability of cement-based materials after CO2 mineralization were effectively improved, and the cement-based materials with high performance were obtained in a short time. This paper reviews currently primary methodologies for the mineralization of CO2 in cement-based material. First, we discuss the reaction characteristics of different cementitious materials and CO2 in the maintenance process of concrete. Second is property improvement of recycled concrete aggregate by mineral carbonation. The CO2 mineralization and utilization technology to improve the mechanical performance of concrete and the quality of recycled concrete aggregate in detail in the perspectives of micro-mechanisms, factors influencing reaction kinetics and CO2 absorption are introduced emphatically. Finally, based on current research status and existing problems, the future development and research direction for CO2 mineralization of cement-based material are also proposed.
Key words:  carbon capture    utilization and storage (CCUS)    mineral carbonation    cement-based material    CO2-curing    recycled concrete aggregate
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  X701  
基金资助: 国家自然科学基金(51604288);绿色建筑材料国家重点实验室开放基金(2019GBM10);道路施工技术与装备教育部重点实验室开放基金项目(300102250505)
通讯作者:  liuqi@cup.edu.cn   
作者简介:  李林坤,2019年5月毕业于长春工业大学,获得工学学士学位。现为中国石油大学(北京)非常规油气科学技术研究院硕士研究生,在刘琦副教授的指导下进行研究。目前主要研究领域为低碳能源工程。
刘琦,中国石油大学(北京)非常规油气科学技术研究院副教授、博士研究生导师。2007年7月本科毕业于中国矿业大学(北京),2012年7月在英国诺丁汉大学化学工程专业取得博士学位,2012—2015年在英国赫瑞瓦特大学进行博士后研究工作。主要从事油气田化学工程和低碳能源工程的研究工作。近年来,在该领域发表论文20余篇,包括Chemical Engineering Science、Journal of cleaner production、Journal of Petroleum Science and Engineering和Journal of CO2 Utilization等。
引用本文:    
李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
LI Linkun, LIU Qi, HUANG Tianyong, LI Yang, PENG Bo. Review on CO2 Mineralization, Sequestration and Utilization of Cement-based Materials. Materials Reports, 2022, 36(19): 20100295-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100295  或          http://www.mater-rep.com/CN/Y2022/V36/I19/20100295
1 Barrie L A, Braathen G O, Butler J H, et al. WMO greenhouse gas bulletin, Springer, Geneva, 2020, pp.153.
2 Moumin G, Ryssel M, Zhao L, et al. Renewable Energy, 2020, 145, 1578.
3 Birol F. In: Low-carbon transition in the cement industry, International Energy Agency, Paris, 2019, pp. 22.
4 Mi J F, Ma X F. Proceedings of the CSEE, 2019, 39(9), 2537(in Chinese).
米剑锋, 马晓芳.中国电机工程学报, 2019, 39(9), 2537.
5 Hepburn C, Adlen E K, Beddington J, et al. Nature, 2019, 575(7781), 87.
6 Pan S, Chen Y, Fan L, et al. Nature Sustainability, 2020, 3(5), 399.
7 Jang J G, Kim G M, Kim H J, et al. Construction and Building Material, 2016, 127(30), 762.
8 China Carbon Dioxide Geological Storage Environmental Risk Research Group. Environmental risk assessment of carbon dioxide geological storage in China, Chemical Industry Press, 2018.
中国二氧化碳地质封存环境风险研究组.中国二氧化碳地质封存环境风险评估, 化学工业出版社, 2018.
9 Huang H, Wang T, Fang M X. Chemical Industry and Engineering Progress, 2019, 38(10), 4363(in Chinese).
黄浩, 王涛, 方梦祥. 化工进展, 2019, 38(10), 4363.
10 Zhan B, Poon C S, Shi C, et al. Cement & Concrete Composites, 2013, 42(9), 1.
11 He F X, Wang Y L. Bulletin of the Chinese Ceramic Society, 2018, 37(11), 3487(in Chinese).
何凤霞, 王雨利. 硅酸盐通报, 2018, 37(11), 3487.
12 Zhang D, Ghouleh Z, Shao Y, et al. Journal of CO2 Utilization, 2017, 21, 119.
13 Wang T, Huang H, Hu T X, et al. Chemical Engineering Journal, 2017, 323, 320.
14 Farnam Y, Villani C, Washington T, et al. Construction and Building Materials, 2016, 111, 63.
15 Ashraf W, Olek J. Journal of Materials Science, 2016, 51, 6173.
16 Young J F, Berger R L, Breese J, et al. Journal of the American Ceramic Society, 1974, 57(9), 394.
17 Shao Y, Mirza M S, Wu X, et al. Canadian Journal of Civil Enginee-ring, 2006, 33, 776.
18 Shi C J, Wang J Y, Tu Z J, et al. Materials Reports A:Review Papers, 2017, 31(3), 134(in Chinese).
史才军, 王吉云, 涂贞军.材料导报:综述篇, 2017, 31(3), 134.
19 Shi C J, Zou Q Y, He F Q. Journal of the Chinese Ceramic Society, 2010, 38(7), 1179(in Chinese).
史才军, 邹庆焱, 何富强. 硅酸盐学报, 2010, 38(7), 1179.
20 El-Hassan H, Shao Y. Cement & Concrete Composites, 2015, 62, 168.
21 Huang H, Guo R, Wang T, et al. Journal of Cleaner Production, 2019, 211, 830.
22 Mo L, Zhang F, Deng M, et al. Construction and Building Materials, 2015, 96, 147.
23 Chang J, Wang S, Shao Y. Journal of the Chinese Ceramic Society, 2007, 35, 1264.
24 Mahoutian M, Shao Y. Journal of Cleaner Production, 2016, 137, 1339.
25 Zhang F, Mo L W, Deng M. Journal of the Chinese Ceramic Society, 2016, 44(5), 640(in Chinese).
张丰, 莫立武, 邓敏. 硅酸盐学报, 2016, 44(5), 640.
26 Wu H Z, Xu D Y, Liang X J. Ready-mixed Concrete, 2020(6), 39(in Chinese).
吴昊泽, 徐东宇, 梁晓杰. 商品混凝土, 2020(6), 39.
27 Teramura S, Isu N, Inagaki K. Journal of Materials in Civil Engineering, 2000, 12, 288.
28 Fang Y, Chang J. Construction & Building Materials, 2015, 76, 360.
29 中国科学院沈阳应用生态研究所.中国专利, CN201510031377.8, 2015.
30 Zhu C, Fang Y, Wei H. Construction and Building Materials, 2018, 192, 224.
31 Bukowski J M, Berger R L. Cement and Concrete Research, 1979, 9, 57.
32 Higuchi T, Morioka M, Yoshioka I, et al. Construction and Building Materials, 2014, 67, 338.
33 Liu S H, Guan X M, Qiu M, et al. Journal of the Chinese Ceramic Society, 2016, 44(5), 658(in Chinese).
刘松辉, 管学茂, 邱满, 等.硅酸盐学报, 2016, 44(5), 658.
34 Chang J, Fang Y, Shang X, et al. Materials and Structures, 2016, 49, 4417.
35 Zhu M, Xue G R, Mu Y D. Bulletin of the Chinese Ceramic Society, 2017, 36(9), 3036(in Chinese).
朱明, 雪高瑞, 穆元冬. 硅酸盐通报, 2017, 36(9), 3036.
36 Huijgen W J, Witkamp G J, Comans R N, et al. Chemical Engineering Science, 2006, 61, 4242.
37 Zajac M, Lechevallier A, Durdzinski P. Journal of CO2 Utilization, 2020, 38, 398.
38 Hou G H, Lu B, Gao X J, et al. Journal of the Chinese Ceramic Society, 2016, 44(2), 286(in Chinese).
侯贵华, 卢豹, 郜效娇, 等.硅酸盐学报, 2016, 44(2), 286.
39 Zhang N, Duan H, Miller T R, et al. Renewable & Sustainable Energy Reviews, 2020, 117, 109.
40 Xu Y M, Tian J Z, Zhu P G. Concrete, 2019(6), 84(in Chinese).
许远明, 田金枝, 朱品国. 混凝土, 2019(6), 84.
41 Borges P H, Costa J O, Milestone N B, et al. Cement and Concrete Research, 2010, 40, 284.
42 Soutomartinez A, Delesky E A, Foster K E, et al. Construction and Building Materials, 2017,147, 417.
43 Chen L, Shen X D, Ma S H, et al. In: The First Academic Annual Mee-ting of Cement Branch of China Silicate Society. Jiaozuo, China, 2009, pp. 186(in Chinese).
陈琳, 沈晓冬, 马素花, 等. 中国硅酸盐学会水泥分会首届学术年会. 焦作, 2009, pp. 186.
44 Wang S P, Li X R, He J, et al. Journal of the Chinese Ceramic Society, 2014, 42(2), 178(in Chinese).
王少鹏, 黎学润, 何杰, 等.硅酸盐学报, 2014, 42(2), 178.
45 Guthrie J. In: GCCA sustainability guidelines for the monitoring and reporting of CO2 emissions from cement manufacturing, Global Cement and Concrete Association, England, 2019, pp. 26.
46 Yi Z, Wang T, Guo R. Journal of CO2 Utilization, 2020, 40, 101.
47 Zhang D, Cai X, Shao Y, et al. Journal of Materials in Civil Enginee-ring, 2016, 28(11), 401.
48 Morandeau A E, Thiery M, Dangla P, et al. Cement and Concrete Research, 2015, 67, 226.
49 Cheng X F. Mechanical strength and microstructural study of cement pastescontaining accelerated carbonated hardened cement paste powder. Master's Thesis, Hunan University, China, 2019(in Chinese).
程雄飞. 加速碳化硬化水泥浆体粉对净浆强度及微观结构的影响. 硕士学位论文, 湖南大学, 2019.
50 Xi F, Davis S J, Ciais P, et al. Nature Geoscience, 2016, 9, 880.
51 Schneider M, Romer M. Cement and Concrete Research, 2011, 41, 650.
52 Zhang W S, Zhang J T, Ye J Y, et al. Journal of the Chinese Ceramic Society, 2019, 47(11), 1663(in Chinese).
张文生, 张江涛, 叶家元, 等. 硅酸盐学报, 2019, 47(11), 1663.
53 Wang Q Q, Li X D, Shen X D. Journal of Nanjing of Tech University (Natural Science Edition), 2017, 39(1), 39(in Chinese).
王倩倩, 李晓冬, 沈晓冬.南京工业大学学报(自然科学版), 2017, 39(1), 39.
54 Yoshioka K, Obata D, Nanjo H, et al. Energy Procedia, 2013, 37, 6018.
55 Mu Y D, Xue G R, Zhao S X, et al. Journal of the Chinese Ceramic Society, 2017, 45(8), 1197(in Chinese).
穆元冬, 雪高瑞, 赵思雪, 等.硅酸盐学报, 2017, 45(8), 1197.
56 Sheng G S, Zhang Y H, et al. Concrete World, 2014(5), 35(in Chinese).
盛岡実, 张友海, 等. 混凝土世界, 2014(5), 35.
57 Vincent M, Nick D C, Jason B, et al. Key Engineering Materials, 2018, 761, 197.
58 Wei L Y, Wang L, Yan B L. Cement, 2014(12), 5(in Chinese).
魏丽颖, 汪澜, 颜碧兰.水泥, 2014(12),5.
59 Chen J N, Zhang H W, Chen S J, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(4), 1288(in Chinese).
陈佳男, 张宏伟, 陈思佳, 等.硅酸盐通报, 2018, 37(4), 1288.
60 Huang H. Mechanism research on CO2 mineral carbonation curing of building materials based on non-hydraulic cementitious materials. Ph.D. Thesis, Zhejiang University, China, 2019(in Chinese).
黄浩. 基于水化惰性胶凝材料的 CO2矿化养护建材机制研究. 博士学位论文, 浙江大学, 2019.
61 Xu Y M, Chen Y. Concrete World, 2019, 117(3), 34(in Chinese).
徐永模, 陈玉.混凝土世界, 2019, 117(3), 34.
62 Vance K, Falzone G, Pignatelli I, et al. Industrial & Engineering Che-mistry Research, 2015, 54(36), 8908.
63 Zhang J, Shi C, Li Y, et al. Journal of Materials in Civil Engineering, 2015, 27(11), 401.
64 Li L K, Liu Q, Ma Z C, et al. Thermal Power Genetion, 2021, 50(1), 94(in Chinese).
李林坤, 刘琦, 马忠诚, 等.热力发电, 2021, 50(1), 94.
65 Kou S, Zhan B, Poon C S, et al. Cement & Concrete Composites, 2014, 45, 22.
66 Shi C, Li Y, Zhang J, et al. Journal of Cleaner Production, 2016, 112, 466.
67 Li Q Y, Li Y X, Zhu C J. Materials Science and Technology, 2005(6), 21(in Chinese).
李秋义, 李云霞, 朱崇绩.材料科学与工艺, 2005(6), 21.
68 Li W G, Long C, Luo Z Y, et al. Journal of Architecture and Civil Engineering, 2016, 33(6), 60(in Chinese).
李文贵, 龙初, 罗智予, 等.建筑科学与工程学报, 2016, 33(6), 60.
69 Thiery M, Dangla P, Belin P, et al. Cement and Concrete Research, 2013, 46, 50.
70 Zhao Z F, Jin P F, Zhao Q Q. Advanced Materials Research, 2014, 919,1817.
71 Zhan B, Poon C S, Liu Q, et al. Construction and Building Materials, 2014, 67, 3.
72 Zhang J K, Shi C J, Li Y, et al. Construction and Building Materials, 2015, 98, 1.
73 Xuan D, Zhan B, Poon C S, et al. Cement & Concrete Composites, 2016, 65, 67.
74 Pan G, Zhan M, Fu M, et al. Construction and Building Materials, 2017, 154, 810.
75 Gao Y Q, Pan B H, Liang C F, et al. Journal of Civil and Environmental Engineering, 2021, 43(6), 95(in Chinese).
高越青, 潘碧豪, 梁超锋,等.土木与环境工程学报, 2021, 43(6), 95.
76 Chinzorigt G, Lim M K, Yu M, et al. Cement and Concrete Research, 2020, 136, 62.
77 Zadeh A H, Mamirov M, Kim S, et al. Construction and Building Mate-rials, 2021, 275, 122.
78 Li Y K. Improvement ofrecycled concrete aggregate properties by CO2 curing. Master's Thesis, Hunan University, China, 2014(in Chinese).
李亚可.二氧化碳强化再生骨料改进其性能的研究. 硕士学位论文.湖南大学, 2014.
79 Liang C, Pan B, Ma Z, et al. Cement & Concrete Composites, 2020, 105, 103.
80 Lee G, Choi H B. Construction and Building Materials, 2013, 40, 455.
81 Xiao J Z, Li W G, Sun Z H. Cement and Concrete Composites, 2013, 37, 276.
82 Siddique S, Shrivastava S, Chaudhary S. Construction and Building Materials, 2017, 155, 688.
83 Assia D. Construction and Building Materials, 2018, 190, 1023.
84 Li H, Guo Q J, Wang J B, et al. Materials Report A:Review Papers, 2020, 34(7), 13050(in Chinese).
李恒, 郭庆军, 王家滨, 等. 材料导报:综述篇, 2020, 34(7), 13050.
85 Wang J Y. Effects of recycled concrete aggregate carbonated treaments on permeability and ITZs of recycled aggregate concrete. Master's Thesis, Hunan University, China, 2018.(in Chinese)
王吉云.再生骨料碳化处理对再生混凝土渗透性和界面的影响. 硕士学位论文, 湖南大学, 2018.
86 Liang C F, Lu N, Ma H W, et al. Journal of CO2 Utilization, 2020, 39, 101.
[1] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[2] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[3] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[4] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[5] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
[6] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[7] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[8] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[9] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[10] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[11] 王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5): 5053-5061.
[12] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[13] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[14] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[15] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed