Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20080196-9    https://doi.org/10.11896/cldb.20080196
  无机非金属及其复合材料 |
有机硫水解催化剂研究进展
王明飞, 陈鹏, 陶雷, 薛宇, 刘敬业, 王学谦, 马懿星*, 王郎郎, 李佳奇
昆明理工大学环境科学与工程学院, 昆明 650500
Research Progress of Organic Sulfur Hydrolysis Catalyst
WANG Mingfei, CHEN Peng, TAO Lei, XUE Yu, LIU Jingye, WANG Xueqian, MA Yixing*, WANG Langlang, LI Jiaqi
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 5286KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机硫是焦炉煤气、天然气、黄磷尾气、合成氨等气体净化的重点和难点,其中羰基硫(COS)和CS2占主要部分。催化水解法被认为是净化工业气体中有机硫的有效途径之一,是一种低成本高效净化技术,能够在较低温度下将COS和CS2催化水解为H2S,进而对H2S进行高效脱除。催化水解法应用于工业精脱硫中具有两大优势:(1)转化率高,反应温度低,不消耗氢源;(2)水解产物H2S的净化工艺成熟,可进行硫资源的回收。
催化水解法已有较成熟的研究和工业应用,然而水解过程中的氧化反应是导致水解剂效率降低和寿命缩短的重要原因。因此,开发出廉价高效的水解催化剂成为本领域的研究热点,H2S的高选择性是有机硫催化水解的重要指标。
以γ-Al2O3、活性炭作为载体制备的水解催化剂是目前应用效果较好的催化剂,且γ-Al2O3的应用最早、最广泛,但其抗氧能力较差、催化剂易中毒等特点使其在应用过程中受到一定限制。TiO2、ZrO2等载体在近几年的研究工作受到关注,不同活性组分的添加为突破水解催化剂对H2S的低选择性和抗毒性提供了可能。此外有机硫水解机理的探究也为水解催化剂的开发提供了理论依据,在此基础上调控反应路径,改善水解过程中多种影响因素,也有助于有机硫水解催化剂活性和寿命的双提升。
本文介绍了COS和CS2催化水解的主要载体和活性组分的研究和应用情况,分别对有机硫水解机理和水解催化剂失活原因进行了总结和归纳,分析了催化水解法在应用中面临的问题并展望其前景,以期为新型高效水解催化材料的设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王明飞
陈鹏
陶雷
薛宇
刘敬业
王学谦
马懿星
王郎郎
李佳奇
关键词:  有机硫  催化水解  催化剂  水解机理  失活    
Abstract: Organic sulfur is the key and difficult point in the purification of coke oven gas, natural gas, yellow phosphorus tail gas, synthetic ammonia and other gases, among which COS and CS2 account for the main part. Catalytic hydrolysis is considered to be one of the most effective ways to purify organic sulfur in industrial gases, which is a low-cost and high-efficiency purification technology. COS and CS2 can be converted to H2S by catalytic hydrolysis at lower temperature, and H2S can be then removed efficiently. There are two major advantages for refined desulfurization by catalytic hydrolysis: (i) high conversion rate, low reaction temperature, and no hydrogen source consumption; (ii) mature purification process of the hydrolysate H2S, which can be used for the recovery of sulfur resources.
Catalytic hydrolysis has been well studied and applied in industry, but the oxidation reaction in the hydrolysis process is an important reason for the reduction of the efficiency and life of the hydrolysis catalyst. Therefore, the development of cheap and efficient hydrolysis catalysts has become a research hotspot in this field. Moreover, high selectivity of H2S is a core indicator of organic sulfur hydrolysis catalysis.
The hydrolysis catalysts prepared with γ-Al2O3 and activated carbon as support are the catalysts with a better application effect at present. Besides, the application of γ-Al2O3 is the earliest and most extensive, but its poor antioxidant capacity and catalyst poisoning characteristics make it limited in the application process. Supports such as TiO2 and ZrO2 have been followed with interest in recent years, and the addition of different active components provides the possibility to break through the low selectivity of H2S and anti-toxicity. In addition, the study on the mechanism of organic sulfur hydrolysis also provides a theoretical basis for the development of hydrolytic catalysts. On this basis, the activity and life of organic sulfur hydrolysis catalysts can be improved by adjusting the reaction path and improving influencing factors in the hydrolysis process.
This review introduces the research and application of the main supports and active components on COS and CS2 catalytic hydrolysis. The hydrolysis mechanism of organic sulfur and hydrolysis catalyst deactivation reason has also been summarized, and the problems faced and future prospect of the catalytic hydrolysis method are analyzed. It is hoped that this paper can provide reference for the design of new high efficiency hydrolytic catalytic materials.
Key words:  organic sulfur    catalytic hydrolysis    catalyst    hydrolysis mechanism    deactivation
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  X511  
基金资助: 国家自然科学基金(21876071;51868030);云南省科技厅科技计划项目(2019FD043)
通讯作者:  *mayixing99@kust.edu.cn   
作者简介:  王明飞,2019年6月毕业于河南城建学院,获得工学学士学位。现为昆明理工大学环境科学与工程学院硕士研究生,在马懿星教授的指导下进行研究。目前主要研究领域为工业废气净化。
马懿星,昆明理工大学环境科学与工程学院副教授、研究生导师,主要从事大气污染控制研究。2011年本科毕业于华中科技大学环境科学与工程学院,2016年博士毕业于昆明理工大学环境科学与工程学院,发表论文30余篇,申请专利20余项,曾获中国有色金属工业技术发明奖等奖项。
引用本文:    
王明飞, 陈鹏, 陶雷, 薛宇, 刘敬业, 王学谦, 马懿星, 王郎郎, 李佳奇. 有机硫水解催化剂研究进展[J]. 材料导报, 2022, 36(17): 20080196-9.
WANG Mingfei, CHEN Peng, TAO Lei, XUE Yu, LIU Jingye, WANG Xueqian, MA Yixing, WANG Langlang, LI Jiaqi. Research Progress of Organic Sulfur Hydrolysis Catalyst. Materials Reports, 2022, 36(17): 20080196-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080196  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20080196
1 Vaidya P D, Kenig E Y. Chemical Engineering Journal, 2009, 148(2), 207.
2 Ryzhikov A, Hulea V, Tichit D, et al. Applied Catalysis A-general, 2011, 397(1), 218.
3 Coffey M T, Hannigan J W. Journal of Atmospheric Chemistry, 2010, 67(1),61.
4 Wang Y J. Removal of low concentration carbonyl sulfur and carbon disulfide by adsorption method. Master's Thesis, Dalian University of Techno-logy, China, 2013 (in Chinese).
艳君. 吸附法脱除二氧化碳中低浓度羰基硫和二硫化碳的研究. 硕士论文, 大连理工大学, 2013.
5 Li C, Zhang T, Li J Q, et al. Applied Chemical Industry, 2015 (5), 927 (in Chinese).
李从, 张婷, 李俊青, 等.应用化工, 2015 (5), 927.
6 Chen Z H, Shang G J, Zhang L, et al. Modern Chemical Industry, 2011, 31(Z1), 244 (in Chinese).
陈兆辉, 上官炬, 张立, 等. 现代化工, 2011, 31(Z1), 244.
7 Wang G, Sun T H, Zhang H B, et al. Modern Chemical Industry, 2014, 34(1), 60 (in Chinese).
王冠, 孙同华, 张宏波, 等.现代化工, 2014, 34(1),60.
8 Sun W T. Study on preparation process of co-modifier modified cobalt-molybdenum hydrodesulfurization catalyst. Master's Thesis, Qingdao University of Science and Technology, China, 2016 (in Chinese).
孙万堂. 助剂改性钴钼加氢脱硫催化剂制备过程研究. 硕士学位论文, 青岛科技大学, 2016.
9 Yang C, Lai J L, Luo G X. Contemporary Chemical Industry, 2015, (10), 2352 (in Chinese).
杨晨, 赖君玲, 罗根祥.当代化工, 2015, (10), 2352.
10 Zhang X D, Yi H H, Tang X L, et al. New Chemical Materials, 2020, 48(5), 266 (in Chinese).
张晓东, 易红宏, 唐晓龙, 等.化工新型材料, 2020, 48(5), 266.
11 Huang H, Young N, Williams B P, et al. Catalysis Letters, 2006, 110(3-4), 243.
12 He E, Huang G, Fan H, et al. Fuel, 2019, 246(2),77.
13 Fiedorow R, Laut R, Lanai G D. Journal of Catalysis, 1984, 85(2), 339.
14 Nimthuphariyha K, Usmani A, Grisdanurak N, et al. Chemical Enginee-ring Communications, 2021, 208(4), 539.
15 Liu B N, Gao H, Zhang J, et al. Industrial Catalysis, 2019, 27(7), 39 (in Chinese).
刘博男, 高辉, 张晋, 等.工业催化, 2019,27(7), 39.
16 Ma T K, Kong X H, Fang J G, et al. Environmental Engineering. 2019, 37(6) (in Chinese).
马腾坤, 房晶瑞, 孟刘邦, 等. 环境工程, 2019, 37(6), 1.
17 Liu J, Yang X Y, Pang L. Molecular Catalysis, 1993(6), 20 (in Chinese).
刘佳, 杨锡尧, 庞礼.分子催化, 1993(6), 20.
18 Ding Y B. Energy Saving from Petroleum and Petrochemicals, 2014, 4(1), 26 (in Chinese).
丁延彬.石油石化节能, 2014, 4(1), 26.
19 Liu Y X, Shangguan J, Wang Z X, et al. Chemical Industry and Engineering Progress, 2018, 37(10), 3885 (in Chinese).
刘艳霞, 上官炬, 王泽鑫, 等.化工进展, 2018, 37(10), 3885.
20 Sui R, Lavery C B, Li D, et al. Applied Catalysis B: Environmental, 2018, 241,217.
21 Gao Z, Hua W M, Zhao X P, et al. Applied Catalysis B: Environmental, 2003, 46(3), 561.
22 Aboulayt A, Maug F, Hoggan P E, et al. Catalysis Letters, 1996, 39(3-4), 213.
23 Yue Y, Zhao X, Hua W, et al. Applied Catalysis B: Environmental, 2003, 46(3), 561.
24 Su J J, Luo P. Nitrogenous Fertilizer Technology, 2021, 42(1), 1 (in Chinese).
苏君健,罗平.氮肥技术,2021,42(1),1.
25 Liu Q, Ke M, Yu P, et al. Petrochemical Technology, 2016, 45(5), 552.
26 Dan H E, H H Yi, Tang X, et al. Journal of Rare Earths, 2010, 28(1), 343.
27 Yi H, Yu L, Tang X, et al. Journal of Central South University of Technology, 2010, 17(5), 985.
28 Li K. Development and mechanism of catalysts for hydrolysis of COS and CS2. Master's Thesis, Kunming University of Science and Technology, China, 2013 (in Chinese).
李凯. COS、CS2水解催化剂的开发及机理研究.硕士学位论文, 昆明理工大学, 2013.
29 Sun X, Ning P, Tang X, et al. Journal of Energy Chemistry, 2014, 23(2), 221.
30 He F, Liu N, Xie J L, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(5), 1464 (in Chinese).
何峰, 刘纳, 谢峻林, 等.硅酸盐通报, 2017,36(5),1464.
31 Wang Y S. Research on green surfactant modified cordierite catalyst for SCO denitration performance. Master's Thesis, Xi'an University of Science and Technology, 2019 (in Chinese).
王禹苏. 绿色表面活性剂改性堇青石催化剂的制备及其在SCO脱硝中的机理研究. 硕士学位论文, 西安科技大学, 2019.
32 Yan M, Xiao Z B, Zhang Y Q, et al. Journal of East China University of Science and Technology, 2016,45 (5), 130 (in Chinese).
严明佳, 肖忠斌, 张益群, 等.华东理工大学学报, 2016,45 (5), 130.
33 Deng C, Xie H F, Cheng F. Molecular Catalysis, 2009, 23(4), 351 (in Chinese).
邓存, 谢鸿芳, 陈峰. 分子催化, 2009, 23(4), 351.
34 Wang W, Xu Z, Guo Z, et al. Chinese Journal of Catalysis, 2015, 36(2), 139.
35 Liu J, Yu L, Zhang Y. Desalination, 2014, 335(1), 78.
36 Zhang S, Yi H, Tang X, et al. Chemical Engineering Journal, 2013, 226(4), 161.
37 Zhang S, Yi H, Tang X, et al. Catalysis Today, 2019, 327, 161.
38 Li Q, Yi H H, Tang L X, et al. Chemical Engineering Journal, 2016, 284, 103.
39 Wang H, Yi H, Tang X, et al. Applied Clay Science, 2012, 70, 8.
40 Zhao S Z, Yi H H, et al. Journal of Rare Earths, 2010, S1, 329.
41 Wei Z, Zhang X, Zhang F L, et al. Environmental Science, 2019, 40(10), 4423 (in Chinese).
魏征, 张鑫, 张凤莲, 等.环境科学, 2019, 40(10), 4423.
42 Guo H, Tang L, Li K, et al. RSC Advances, 2015,5(26), 20530.
43 Kloprogge J T, Hickey L, Frost R L. Materials Chemistry & Physics, 2005,89(1), 99.
44 Kloprogge J T, Hickey L, Frost R L. Journal of Solid State Chemistry, 2004, 177(11), 4047.
45 Wang Q, Wu Z H, Hang H, et al. Catalysis Today, 2011, 164(1), 198.
46 Labajos F M, Rives V, Malet P, et al. American Chemical Society, 1996, 27(23), 1154.
47 Zhang G G, Li W F, Xie K Y, et al. Advanced Functional Materials, 2013, 23(29), 3675.
48 Zhao S Z. Microstructure design and experimental study of Nickel-based COS-depth purification materials. Master's Thesis, University of Science and Technology Beijing, China, 2016 (in Chinese).
赵顺征. 镍基COS深度净化材料的微观构型设计与实验研究. 硕士学位论文, 北京科技大学, 2016.
49 Ramasamy K K, Gray M, Job H, et al. Topics in Catalysis, 2016, 59(1), 46.
50 Yi H H, Zhao S Z, et al. Catalysis Communications, 2011, 12(15), 1492.
51 Schoedel L A, Li M, Li D, et al. Chemical Reviews, 2016, 116(19), 12466.
52 Lee S, Kapustin E A, Yaghi O M. Science, 2016, 353(6301), 808.
53 Zhao X, Yue Y, Ying Z, et al. Catalysis Letters, 2003, 89(1-2), 41.
54 Zhao S S, Ma J F, Liu Y Y, et al. Inorganic Chemistry, 2016, 55(5), 2261.
55 Shen L, Wang G, Zheng X, et al. Chinese Journal of Catalysis, 2017, 38(8), 1373.
56 Qiu C, Xu Y, Fan X, et al. Advanced Science, 2019, 6(1), 12466.
57 Su F, Antonietti M, Wang X. Catalysis Science & Technology, 2012, 2(5), 1005.
58 Guo F, Li S, Hou Y, et al. Chemical Communications, 2019, 55(75), 11259.
59 Tang S, Li C, Liang S, et al. Catalysis Letters, 1991, 8(2-4), 155.
60 Church J S, Cant N W, Trimm D L. Applied Catalysis A General, 1993, 101(1), 105.
61 Lai J J, Lai X C, Liu Y, et al. Journal of Petrochemical Universities, 2017, 30(5), 12 (in Chinese).
赖君玲, 赖晓晨, 柳叶, 等. 石油化工高等学校学报, 2017, 30(5), 12.
62 Rhodes C, Riddel S A, West J, et al. Catalysis Today, 2000, 59(3), 443.
63 Qiu J, Ning P, Wang X Q, et al. Frontiers of Environmental Science & Engineering, 2016, 10(1), 11.
64 Li Q, Yi H H, Tang X L, et al. Chemical Engineering Journal, 2016, 284(103),28.
65 Ning P, Yu L L, Yi H H, et al. Journal of Rare Earths, 2010, 28(2), 205.
66 Huang H, Young N, Williams B P, et al. Catalysis Letters, 2005, 104(1-2), 17.
67 Song X. Study on the simultaneous hydrolysis of COS and CS2 and the reaction mechanism of walnut shell based catalyst. Master's Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese).
宋辛. 核桃壳基催化剂同时催化水解 COS 和 CS2及反应机理研. 硕士学位论文, 昆明理工大学, 2018.
68 Zhu L. Study on denitration performance and mechanism of transition me-tal oxides over low temperature SCR catalyst. Master's Thesis, Southeast University, China, 2018 (in Chinese).
朱林. 过渡金属氧化物低温SCR催化剂脱硝性能及机理研究. 硕士学位论文, 东南大学, 2018.
69 Xiao Z B, Ma J X, Zhang Q Q, et al. Applied Catalysis, B Environmental, 2017, 30(5), 12.
70 He D, Yi H H, et al. Journal of Rare Earths, 2010, 28(s1), 343.
71 Huang H, Young N, Willams B P, et al. Green Chemistry, 2008, 10(5), 571.
72 David Chiche, Jean-Marc Schweitzer. Applied Catalysis B: Environmental, 2017, 15(205), 189.
73 Wang G J, Tian A X, Chen X T, et al. Petroleum Refinery Engineering, 2017, 47(9), 37 (in Chinese).
王广建, 田爱秀, 陈晓婷, 等. 炼油技术与工程, 2017, 47(9), 37.
74 Nowinska K, Fiedorow R, Adamiec J. Cheminform, 2010, 22(23), 71.
75 Song X, Ning P, Wang C, et al. Applied Surface Science, 2017, 31(414), 345.
76 Han S, Yang H, Ning P, et al. Research on Chemical Intermediates, 2018, 44(1), 1.
77 Wang Y H. Study of hydrolysis carbonyl sulfide over mixed oxides from hydrotalcite-like compounds. Master's Thesis, Kunming University of Science and Technology, China, 2011 (in Chinese).
王红妍. 类水滑石衍生复合氧化物催化水解羰基硫研究. 硕士学位论文, 昆明理工大学, 2011.
78 George Z. Journal of Catalysis, 1974, 32(2) 261.
79 Li D S, Feng T, Yao S L. Environmental Science & Technology, 2007,10,65.
80 Yu L L, Tang X L, Yi H H, et al. Industrial Catalysis, 2009, 17(5), 21 (in Chinese).
于丽丽, 唐晓龙, 易红宏, 等. 工业催化, 2009, 17(5), 21.
81 Zhao S, Yi H, Tang X, et al. Ultrasonics Sonochemistry, 2016, 32, 336.
82 Ling L, Zhang R, Han P, et al. 2016, 18(4), 1625.
83 Zhu T T, Wang C, Song X, et al. Environmental Pollution, 2018, 232, 615.
84 Han S. Catalytic hydrolysis of COS and reaction mechanism of CS2 with Fe2O3 graphene. Master's Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese).
韩双.Fe2O3石墨烯催化水解COS及CS2反应机理研. 硕士学位论文, 昆明理工大学, 2018.
85 Sahibeddinea A, Bensitela M, Aboulayt A, et al. Journal of Molecular Catalysis A: Chemical, 2000, 20(162), 125.
86 Huisman H M, vander Berg P, Mos R, et al. American Chemical Society, 1994, 32, 393.
87 Laperdrix E, Justin I, Costentin G, et al. Applied Catalysis B: Environmental, 1998, 17, 167.
88 Liu J F, Liu Y C, Xue L, et al. Actaphysico-Shimica Sinica, 2007, 23(7), 997 (in Chinese).
刘俊锋, 刘永春, 薛莉, 等. 物理化学学报, 2007, 23(7),997.
89 Wei Z, Zhang X, Zhang F L, et al. Journal of Hazardous Materials, 2021, 5(407),135
90 Yi H Y, Yi H H, Tang X L, et al. Journal of Environmental Enginee-ring, 2012, 6(2), 545.
91 Tasdemir H M, Yasyerli S, Yasyerli N. International Journal of Hydrogen Energy, 2015, 40 (32) 9989.
92 Liu J, Liu D D. Science and Technology Economy Guide, 2020, 28(2), 64.
刘佳, 刘丹丹.科技经济导刊, 2020, 28(2), 64.
93 Wang C, Li K, Sun X, et al. Frontiers of Materials Science, 2018, 012(4), 426.
94 Song X, Sun L, Guo H, et al. ACS Omega, 2019, 4(4), 7122.
95 Yi H, Zhao S, Tang X, et al. Catalysis Communications, 2014, 56, 106.
[1] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[2] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[3] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[4] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[5] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[6] 高助威, 李小高, 刘钟馨, 饶健民. 氢燃料电池汽车的研究现状及发展趋势[J]. 材料导报, 2022, 36(14): 21060046-8.
[7] 王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 20120169-9.
[8] 陆强, 吴亚昌, 徐明新, 曲艳超, 王涵啸, 裴鑫琦, 欧阳昊东. 抗高温失活SCR脱硝催化剂研究进展[J]. 材料导报, 2022, 36(13): 20090242-9.
[9] 严蛟, 邝旻翾, 胡宏林, 孔磊, 马慧玲, 张秀芹. 间苯二酚-甲醛基酚醛/碳气凝胶微观结构调控研究进展[J]. 材料导报, 2022, 36(12): 20090342-10.
[10] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[11] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[12] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[13] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[14] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[15] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed