Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20080171-9    https://doi.org/10.11896/cldb.20080171
  无机非金属及其复合材料 |
纳米载体共递送基因和化疗药物用于肿瘤治疗的研究进展
贾斐, 杜传超, 毛天立, 刘宇, 刘晓光*
北京大学第三医院,北京100191
Progress in the Use of Nanocarriers for Co-delivery of Genes and Chemotherapeutic Agents for Cancer Therapy
JIA Fei, DU Chuanchao, MAO Tianli, LIU Yu, LIU Xiaoguang*
Peking University Third Hospital, Beijing 100191, China
下载:  全 文 ( PDF ) ( 4062KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化疗的应用前景目前受到肿瘤多药耐药性(Multidrug resistance, MDR)、药物分布的非特异性和系统性毒副作用等缺点限制。治疗性基因可通过适当载体运送至肿瘤细胞,通过下调耐药相关蛋白的表达或沉默其他调控肿瘤功能的基因以实现治疗的目的。因此,借助纳米载体将化疗与基因治疗联合应用可发挥两者的协同作用,改善化疗效果,是一种具有广阔前景的抗癌策略。
沉默耐药相关基因是解决肿瘤MDR的主要思路,除此之外,尚需开发其他可协同化疗的基因治疗策略,通过调控肿瘤发生、发展的某个或某些环节以达到更显著的肿瘤治疗效果。与此同时,使用纳米颗粒(Nanoparticles, NPs)共递送基因和化疗药物对纳米载体提出了更高的要求。基因易被核酸酶降解,在血流中不稳定,细胞摄取差且转染效率低,因此亟需安全高效的共递送系统来克服诸多障碍,实现最大效率的药物共载和运送。
依据所选择治疗基因靶点的不同,基因-化疗药物共递送的治疗策略可分为逆转肿瘤细胞MDR、促肿瘤细胞凋亡、抗肿瘤血管生成、化疗协同免疫治疗及清除肿瘤干细胞(Cancer stem cells, CSCs)等多种,递送的基因包括MDR-1 siRNA、Bcl-2 siRNA、p53 DNA、VEGF siRNA、PD-L1 siRNA及miR-205等类型。用于共递送的理想纳米载体应符合安全性高、生物相容性好、具有可生物降解性、基因转染率高等条件。研究者们充分利用各类材料的特性优势,开发出聚合物纳米粒、纳米胶束、脂质体、无机纳米颗粒、病毒及核酸载体等不同类型的共递送载体。此外,通过对载体进行刺激响应性设计可实现依据肿瘤微环境或外部环境变化而靶向释放药物的效果,从而避免包裹药物的突释,保证肿瘤部位的药物分布,提高治疗效率的同时减轻药物对正常组织的毒副作用。
本文归纳了纳米载体共递送基因和化疗药物的阶段性研究进展,分别对基因-化疗药物共递送策略及共递送载体等进行介绍,分析了各类型载体的特点,思考了纳米载体研发领域一些待解决的问题并展望其前景,以期为实现安全高效的基因-化学联合治疗提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾斐
杜传超
毛天立
刘宇
刘晓光
关键词:  基因治疗  化疗  共递送  纳米载体  肿瘤治疗    
Abstract: The application prospect of chemotherapy is currently limited by the disadvantages of tumor multidrug resistance (MDR), non-specific drug distribution and systemic toxic side effects. Therapeutic genes can be transported to tumor cells by appropriate vectors to achieve therapeutic purposes by down-regulating the expression of resistance-associated proteins or silencing other genes that regulate tumor function. Therefore, the combination of chemotherapy and gene therapy with the help of nanocarriers can exert the synergistic effect of the two and improve the effect of chemotherapy, which is a promising anticancer strategy.
Silencing drug resistance-related genes is the main idea to solve tumor MDR, and it is still necessary to explore other gene therapy strategies that can synergize with chemotherapy to achieve the purpose of cancer treatment for a wider range of targets by regulating one or some links in tumor development. In the meantime, the use of nanoparticles (NPs) to co-deliver genes and chemotherapeutic agents places higher demands on nanocarriers. Genes are easily degraded by nucleases, unstable in the bloodstream, poor cellular uptake and low transfection efficiency, so safe and efficient co-delivery systems are urgently needed to overcome many obstacles and achieve maximum efficiency of drug co-loading and transport.
According to the different therapeutic gene targets selected, the therapeutic strategies of gene-chemotherapy drug co-delivery can be divided into various types such as reversing MDR in tumor cells, promoting tumor cell apoptosis, anti-tumor angiogenesis, chemotherapy synergistic immunotherapy and removing cancer stem cells (CSCs), and the delivered genes include MDR-1 siRNA, Bcl-2 siRNA, p53 DNA, VEGF siRNA, PD-L1 siRNA and miR-205. The ideal nanocarrier for co-delivery should meet the conditions of high safety, good biocompatibility, biodegradability, and high gene transfection rate. Researchers have made full use of the characteristic advantages of various materials to develop different types of co-delivery carriers such as polymer nanoparticles, nanomicelles, liposomes, inorganic nanoparticles, viruses and nucleic acid carriers. In addition, the effect of targeted release of drugs according to the changes in tumor microenvironment or external environment can be realized by stimulating responsive design of carriers, so as to avoid the sudden release of encapsulated drugs, ensure the drug distribution at the tumor site, improve the therapeutic efficiency and reduce the toxic side effects on normal tissues.
In this review, the phased research progress of co-delivery of genes and chemotherapeutic drugs by nanocarriers is summarized, the co-delivery strategies and co-delivery carriers of gene-chemotherapeutic drugs are introduced, the characteristics of various types of carriers are analyzed, some problems to be solved in the field of nanocarrier research are considered and their prospects are prospected. The above contents provide a reference for realizing safe and efficient gene-chemical combination therapy.
Key words:  gene therapy    chemotherapy    co-delivery    nanocarrier    cancer therapy
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  R979.1  
基金资助: 国家自然科学基金(81972103)
通讯作者:  *xgliudoctor@163.com   
作者简介:  贾斐,2016年6月毕业于山东第一医科大学,获得医学学士学位。现为北京大学第三医院骨科博士研究生,在刘晓光教授的指导下进行研究,目前主要研究领域为生物活性材料的基础与临床研究。
刘晓光,北京大学教授、博士研究生导师,现任北大医学部副主任。本科毕业于北京大学,留校工作至今。目前主要研究领域为脊柱后纵韧带骨化及骨肿瘤相关的基础与临床研究。作为课题负责人,承担省部级以上课题11项,发表论文230余篇,申请并授权国家发明专利117项。全国“五一劳动奖章”获得者,国务院“抗震救灾先进个人”荣誉称号获得者。
引用本文:    
贾斐, 杜传超, 毛天立, 刘宇, 刘晓光. 纳米载体共递送基因和化疗药物用于肿瘤治疗的研究进展[J]. 材料导报, 2022, 36(17): 20080171-9.
JIA Fei, DU Chuanchao, MAO Tianli, LIU Yu, LIU Xiaoguang. Progress in the Use of Nanocarriers for Co-delivery of Genes and Chemotherapeutic Agents for Cancer Therapy. Materials Reports, 2022, 36(17): 20080171-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080171  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20080171
1 Chen Q, Ke H, Dai Z, et al. Biomaterials, 2015, 73, 214.
2 Jardim G, Lima D, Valença W, et al. Molecules, 2017, 23, 83.
3 Wu Q, Yang Z, Nie Y, et al. Cancer Letters, 2014, 347, 159.
4 Pérez-Herrero E, Fernández-Medarde A. European Journal Pharmaceutics and Biopharmaceutics, 2015, 93, 52.
5 Susa M, Choy E, Yang C, et al. Journal of Biomolecular Screening, 2010, 15, 287.
6 Chow E K, Ho D. Science Translational Medicine, 2013, 5, 216rv4.
7 Zhang X Q, Xu X, Bertrand N, et al. Advanced Drug Delivery Reviews, 2012, 64, 1363.
8 Ramya R, Shruthilaya M, Akila K. International Journal of Nanomedicine, 2012, 2012, 1043.
9 Karageorgis A, Dufort S, Sancey L, et al. Scientific Reports, 2016, 6, 21417.
10 Yoo J W, Irvine D J, Discher D E, et al. Nature Reviews Drug Discovery, 2011, 10, 521.
11 Zhao M, van Straten D, Broekman M L D, et al. Theranostics, 2020, 10, 1355.
12 Thibault M, Lavertu M, Astolfi M, et al. Molecular Biotechnology, 2016, 58, 648.
13 Zhang M, Liu E, Cui Y, et al. Cancer Biology & Medicine, 2017, 14, 212.
14 Ahmed K A, Davis B J, Wilson T M, et al. Frontiers in Oncology, 2012, 2, 172.
15 Rui M, Qu Y, Gao T, et al. International Journal of Nanomedicine, 2017, 12, 217.
16 Baek D, Villen J, Shin C, et al. Nature, 2008, 455, 64.
17 Svoronos A A, Engelman D M, Slack F J. Cancer Research, 2016, 76, 3666.
18 Xue H Y, Liu S, Wong H L. Nanomedicine, 2014, 9, 295.
19 Yi Y, Kim H J, Mi P, et al. Journal of Controlled Release, 2016, 244, 247.
20 Li X, Sun A N, Liu Y J, et al. NPG Asia Materials, 2018, 10, 238.
21 Cullis P R, Hope M J. Molecular Therapy, 2017, 25, 1467.
22 Leber N, Nuhn L, Zentel R. Macromolecular Bioscience, 2017, 17(10), 1700092.
23 Singh M S, Peer D. Therapeutic Delivery, 2016, 7, 51.
24 Shah S, Lal H A. Therapeutic Delivery, 2015, 6, 1131.
25 Abbasi M, Lavasanifar A, Uludag H. Medicinal Research Reviews, 2013, 33, 33.
26 Wu M, Lin X, Tan X, et al. ACS Applied Materials & Interfaces, 2018, 10, 19416.
27 Zhang Q, Kuang G, He S, et al. Nano Letters, 2020, 20, 3039.
28 Hao F, Lee RJ, Yang C, et al. Pharmaceutics, 2019, 11, 92.
29 Xiong X B, Lavasanifar A. ACS Nano, 2011, 5, 5202.
30 Sun T M, Du J Z, Yao Y D, et al. ACS Nano, 2011, 5, 1483.
31 Hussain M, Beale G, Hughes M, et al. International Journal of Pharmaceutics, 2002, 234, 129.
32 Wan W J, Qu C X, Zhou Y J, et al. International Journal of Pharmaceutics, 2019, 566, 731.
33 Zhu Q L, Zhou Y, Guan M, et al. Biomaterials, 2014, 35, 5965.
34 Xu F, Ye M L, Zhang Y P, et al. Cancer Science, 2020, 111, 1528.
35 Xu X, Xie K, Zhang X Q, et al. Proceedings of the National Academy of Sciences, 2013, 110, 18638.
36 Zhang X, Zeng X, Liang X, et al. Biomaterials, 2014, 35, 9144.
37 Cho K, Wang X, Nie S, et al. Clinical Cancer Research, 2008, 14, 1310.
38 Wang D, Xu X, Zhang K, et al. International Journal of Nanomedicine, 2017, 13, 187.
39 Cao Y, Huang H Y, Chen L Q, et al. ACS Applied Materials & Interfaces, 2019, 11, 9763.
40 Zhang X, Pan J, Yao M, et al. European Journal Pharmaceutics and Biopharmaceutics, 2020, 154, 43.
41 Roberts C M, Shahin S A, Wen W, et al. Nanomedicine, 2017, 13, 965.
42 Chen Y, Sun L, Guo D, et al. Journal of Gene Medicine, 2017, 19(12), e2998.
43 Byeon Y, Lee J W, Choi W S, et al. Cancer Research, 2018, 78, 6247.
44 Bahreyni A, Alibolandi M, Ramezani M, et al. Colloids and Surfaces B: Biointerfaces, 2019, 175, 231.
45 Li C, Li T, Huang L, et al. Chemistry-an Asian Journal, 2019, 14, 1570.
46 Wang S, Liu X, Chen S, et al. ACS Nano, 2019, 13, 274.
47 Shen J, Meng Q, Sui H, et al. Molecular Pharmaceutics, 2014, 11, 2579.
48 Li M, Zhao P, Fan T, et al. International Journal of Pharmaceutics, 2019, 572, 118769.
49 Zhang X, Wang Q, Qin L, et al. Drug Delivery, 2016, 23, 2936.
50 Davoodi P, Srinivasan M P, Wang C H. Acta Biomaterialia, 2016, 39, 79.
51 Shi H, Sun S, Xu H, et al. International Journal of Nanomedicine, 2020, 15, 3347.
52 Gong C, Hu C, Gu F, et al. Journal of Controlled Release, 2017, 266, 272.
53 Wang F, Zhang L, Bai X, et al. ACS Applied Materials & Interfaces, 2018, 10, 22767.
54 Kwak G, Jo S D, Kim D, et al. Journal of Controlled Release, 2017, 267, 203.
55 Jang Y, Kim D, Lee H, et al. Nanomedicine, 2020, 27, 102194.
56 Zhou Y J, Wan W J, Tong Y, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2020, 108, 1710.
57 Song W, Shen L, Wang Y, et al. Nature Communications, 2018, 9, 2237.
58 Tang X, Rao J, Yin S, et al. European Journal of Pharmaceutical Sciences, 2019, 127, 161.
59 Yang T, Chen Y, Zhao P, et al. Nanomedicine, 2018, 14, 2009.
60 Chaudhary A K, Mondal G, Kumar V, et al. Cancer Letters, 2017, 402, 1.
61 Wei J, Han X S, Zhang C W, et al. Materials Reports A: Review Papers, 2019, 33(1), 16(in Chinese).
韦晶,韩希恩,张承武,等.材料导报:综述篇, 2019, 33(1), 16.
62 Akkapeddi P, Azizi S A, Freedy, A M, et al. Chemical Science, 2016, 7, 2954.
63 Hu X, Li J, Lin W, et al. RSC Advances, 2014, 4, 38405.
64 Zhang Y, Xiao C, Li M, et al. Macromolecular Bioscience, 2013, 13, 584.
65 Li W, Wei H, Li H, et al. Nanomedicine (London), 2014, 9, 2587.
66 Miao L, Lin C M, Huang L. Journal of Controlled Release, 2015, 219, 192.
67 Zhu X, Sun Y, Chen D, et al. Journal of Controlled Release, 2017, 254, 107.
68 Ryu J H, Chacko R T, Jiwpanich S, et al. Journal of the American Chemi-cal Society, 2010, 132, 17227.
69 Gao G H, Park M J, Li Y, et al. Biomaterials, 2012, 33, 9157.
70 Li H, Sun Y, Chen D, et al. Scientific Reports, 2015, 5, 15712.
71 Markman J L, Rekechenetshiy A, Holler E, et al. Advanced Drug Delive-ry Reviews, 2013, 65, 1866.
72 Zhang L, Wang T, Li L, et al. Chemical Communication, 2012, 48, 8706.
73 Liu P F, Yu H, Sun Y, et al. Biomaterials, 2012, 33, 4403.
74 Nehate C, Moothedathu Raynold A A, Koul V. ACS Applied Materials & Interfaces, 2017, 9, 39672.
75 Sadreddini S, Safaralizadeh R, Baradaran B, et al. Immunology Letters, 2017, 181, 79.
76 Glasgow M D, Chougule M B. Journal of Biomedical Nanotechnology, 2015, 11, 1859.
77 Pan J, Mendes L P, Yao M, et al. European Journal Pharmaceutics and Biopharmaceutics, 2019, 136, 18.
78 Patil M L, Zhang M, Taratula O, et al. Biomacromolecules, 2009, 10, 258.
79 Zhen X, Cheng P, Pu K. Small, 2019, 15, 1804105.
80 Chen M, Chen M, He J. Artificial Cells Nanomedicine and Biotechnology, 2019, 47, 1635.
81 Cabral H, Kataoka K. Journal of Controlled Release, 2014, 190, 465.
82 Li X, Yu Y, Ji Q, et al. Nanomedicine, 2015, 11, 175.
83 Basak R, Bandyopadhyay R. Langmuir, 2013, 29, 4350.
84 Pitto-Barry A, Barry N P. Polymer Chemistry, 2014, 5, 3291.
85 Zhang C G, Yang S D, Zhu W J, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017, 105, 2093.
86 Butt A M, Amin M C, Katas H, et al. Molecular Pharmaceutics, 2016, 13, 4179.
87 Khare R, Li J, Lu Z. Journal of Biomedical Informatics, 2014, 52, 448.
88 Bangham A D, Standish M M, Watkins J C. Journal of Molecular Biology, 1965, 13, 238.
89 Zhang J, Du Z, Pan S, et al. ACS Applied Materials & Interfaces, 2018, 10, 21590.
90 Haghiralsadat F, Amoabediny G, Naderinezhad S, et al. International Journal of Nanomedicine, 2018, 13, 3853.
91 Pang J, Luan Y, Yang X, et al. Mini-reviews in Medicinal Chemistry, 2012, 12, 775.
92 Yu C, Qian L, Ge J, et al. Angewandte Chemie International Edition, 2016, 55, 9272.
93 Yu C, Qian L, Uttamchandani M, et al. Angewandte Chemie International Edition, 2015, 54, 10574.
94 Gupta B, Ruttala H B, Poudel B K, et al. ACS Applied Materials & Interfaces, 2018, 10, 24392.
95 Zhu S H, Huang B Y, Zhou K C. Journal of Nanoparticle Research, 2004, 6, 307.
96 Chen H, Ma X, Li Z, et al. Biomedicine & Pharmacotherapy, 2012, 66, 334.
97 Li J M, Zhao M X, Su H, et al. Biomaterials, 2011, 32, 978.
98 Xiao Y, Jaskula-Sztul R, Javadi A, et al. Nanoscale, 2012, 4, 7185.
99 Yin P T, Pongkulapa T, Cho H Y, et al. ACS Applied Materials & Interfaces, 2018, 10, 26954.
100 Pereira S, Lee J, Rubio N, et al. Pharmaceutical Research, 2015, 32, 3293.
101 Li J M, Wang Y Y, Zhao M X, et al. Biomaterials, 2012, 33, 2780.
102 Yin F, Yang C, Wang Q, et al. Theranostics, 2015, 5, 818.
103 Yang J, Zhang Q, Liu Y, et al. Nanomedicine (London), 2020, 15, 1391.
104 Shen L H, Zhou J, Wang Y X, et al. Small, 2015, 11, 1190.
105 Zhao J, Ye Z, Yang J, et al. Biomaterials, 2020, 240, 119849.
106 Zhou J, Shum K T, Burnett J C, et al. Pharmaceuticals (Basel), 2013, 6, 85.
107 Shu D, Shu Y, Haque F, et al. Nature Nanotechnology, 2011, 6, 658.
108 Cui D, Zhang C, Liu B, et al. Scientific Reports, 2015, 5, 10726.
109 Zahid M, Kim B, Hussain R, et al. Nanoscale Research Letters, 2013, 8, 119.
110 Shu Y, Yin H, Rajabi M, et al. Journal of Controlled Release, 2018, 276, 17.
111 Zhu L, Guo Y, Qian Q, et al. Angewandte Chemie International Edition, 2020, 59(41), 17944.
112 Li W, Huang L, Ying X, et al. Angewandte Chemie International Edition, 2015, 54, 3126.
113 Wu L, Zou Y, Deng C, et al. Biomaterials, 2013, 34, 5262.
114 Lv S, Tang Z, Zhang D, et al. Journal of Controlled Release, 2014, 194, 220.
115 Wan W J, Qu C X, Zhou Y J, et al. International Journal of Pharmaceutics, 2019, 566, 731.
116 Gao Y, Jia L, Wang Q, et al. ACS Applied Materials & Interfaces, 2019, 11, 16296.
117 Tang S, Meng Q, Sun H, et al. Advanced Functional Materials, 2016, 26, 6033.
118 Wu M, Lin X, Tan X, et al. ACS Applied Materials & Interfaces, 2018, 10, 19416.
119 Zhang Q, Kuang G, He S, et al. Nano Letters, 2020, 20, 3039.
[1] 叶舒岳, 冯雅丽, 史海斌. 智能响应型小分子探针在肿瘤诊疗方面的研究进展[J]. 材料导报, 2022, 36(3): 21120202-15.
[2] 唐昭敏, 田维君. pH响应型纳米药物用于化疗-光热协同治疗肿瘤[J]. 材料导报, 2022, 36(3): 21120187-6.
[3] 姜佳敏, 李盼盼, 方斌, 杜威, 柏桦, 彭勃, 李林. 蛋白质药物胞内递送纳米载体的研究进展[J]. 材料导报, 2021, 35(13): 13186-13197.
[4] 吴天怡, 龚妍春, 李资玲, 李玉萍, 熊向源. 抗癌纳米药物共递送系统的应用研究[J]. 材料导报, 2020, 34(Z1): 516-522.
[5] 宋鹏宇, 邓永岩, 韩海杰, 金桥. 活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究[J]. 材料导报, 2020, 34(10): 10166-10170.
[6] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[7] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed