Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21030086-7    https://doi.org/10.11896/cldb.21030086
  无机非金属及其复合材料 |
质子交换膜燃料电池微孔层在反极过程中的耐久性研究
张立昌1,2, 蔡超1,2, 谭金婷1,2, 周江峰1,2, 王园1,2, 潘牧1,2
1 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
2 武汉理工大学燃料电池湖北省重点实验室,武汉 430070
Study on the Durability of the Microporous Layer of Proton Exchange Membrane Fuel Cell During the Voltage Reversal Process
ZHANG Lichang1,2, CAI Chao1,2, TAN Jinting1,2, ZHOU Jiangfeng1,2, WANG Yuan1,2, PAN Mu1,2
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2 Hubei Key Laboratory of Fuel Cells, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 7017KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微孔层在启停、反极等高电位下的电化学腐蚀是影响质子交换膜燃料电池寿命的重要因素。目前关于微孔层的腐蚀研究多数是采用离线测试方法模拟反极过程的高电位,研究结果显示微孔层在高电位下碳腐蚀严重,接触角明显减小,且对电池性能造成严重影响。但是实际反极测试结果与离线测试结果相悖。本工作通过在线反极测试研究微孔层在反极过程中的耐久性,评价反极前后微孔层对电池性能的影响机制。此外,对比分析在线反极和传统的离线试验过程与结果发现,由于离线测试时微孔层是浸泡在电解质溶液中,电解质增加了微孔层的质子传导能力,从而加快了碳腐蚀速率,而在线反极试验过程中微孔层并没有出现明显的碳腐蚀,因此传统的离线高电位腐蚀试验并不能模拟真实的反极电化学腐蚀过程。通过设计一种带有电解质的微孔层,进一步研究在线反极过程中电解质对碳腐蚀的影响,验证了在高电位下电解质的存在能够促进碳电化学腐蚀反应的发生。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张立昌
蔡超
谭金婷
周江峰
王园
潘牧
关键词:  质子交换膜燃料电池(PEMFC)  在线反极  离线恒电位  微孔层  碳腐蚀    
Abstract: The electrochemical corrosion of the microporous layer at high potentials caused by start-up/shut down and voltage reversal is an important factor affecting the lifetime of proton exchange membrane fuel cells. At present, most of the corrosion research on the microporous layer was conducted by Ex situ constant potential test method to simulate the high potential of the voltage reversal process. Under Ex situ high potential, carbon in the microporous layer corrodes severely, and the contact angle was significantly reduced, which deteriorated the cell performance. However, the results by actual voltage reversal test are inconsistent with that by Ex situ constant potential test. In this paper, the durability of the microporous layer in the voltage reversal process was studied through the in situ test, and the influence mechanism of microporous layer before and after voltage reversal on cell performance was evaluated. Meanwhile, the results by in situ voltage reversal test and Ex situ constant potential test were compared. When the microporous layer was immersed in the electrolyte solution during Ex situ constant potential test process, the pre-sence of electrolyte solution will increase the proton conductivity, and accelerated the carbon corrosion rate, which was impossible in actual fuel cells. Therefore, the Ex situ constant potential test cannot simulate the actual voltage reversal process. In order to further prove this hypothesis, we designed a microporous layer impregnated Nafion electrolyte, and verified that the presence of electrolyte in the microporous layer can promote the occurrence of carbon electrochemical corrosion reaction at high potential during the actual voltage reversal process.
Key words:  proton exchange membrane fuel cell (PEMFC)    in situ voltage reversal test    Ex situ constant potential    microporous layer    carbon corrosion
发布日期:  2022-07-26
ZTFLH:  TM911.42  
基金资助: 国家自然科学基金(22109122;21875177);佛山仙湖实验室开放基金(XHD2020- 002- 03; XHD2020- 002- 04);湖北省自然科学基金(2020CFB225);中央高校基本科研业务费专项基金(WUT:202443008)
通讯作者:  tanjinting@whut.edu.cn; panmu@whut.edu.cn   
作者简介:  张立昌,2021年6月毕业于武汉理工大学,获得工学硕士学位。于2018年9月—2021年6月在武汉理工大学材料复合新技术国家重点实验室燃料电池课题组学习,主要从事质子交换膜燃料电池领域的研究。
谭金婷,武汉理工大学高级实验师。2008年于齐鲁工业大学材料化学专业获得学士学位,2012年于西北大学材料物理与化学专业获得硕士学位,2017年于西安交通大学电子科学与技术专业获得博士学位,2017年加入武汉理工大学燃料电池实验室工作至今,主要从事燃料电池膜电极关键材料的研究,以及相关测试工作。在国内外重要期刊发表文章40多篇,申报发明专利10余项。
潘牧,武汉理工大学首席教授。1985年于上海交大学获得学士学位,1988年于上海交通大学获得硕士学位,1988年入职武汉理工大学,1999年于武汉理工大学材料学专业获得博士学位,主要从事氢能燃料电池关键材料、电堆、动力系统等研究,承担了基础研究和技术开发重大项目10余项,发表SCI论文200余篇,获授权发明专利80多项。
引用本文:    
张立昌, 蔡超, 谭金婷, 周江峰, 王园, 潘牧. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 21030086-7.
ZHANG Lichang, CAI Chao, TAN Jinting, ZHOU Jiangfeng, WANG Yuan, PAN Mu. Study on the Durability of the Microporous Layer of Proton Exchange Membrane Fuel Cell During the Voltage Reversal Process. Materials Reports, 2022, 36(14): 21030086-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030086  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21030086
1 Lin R H, Xi X N, Wang P N, et al. International Journal of Hydrogen Energy, 2019, 44(11), 5488.
2 Xiong S S, Song Q J, Guo B S, et al. International Journal of Hydrogen Energy, 2020, 45(35), 17844.
3 Jayakumar A. Frontiers in Energy, 2019, 13(2), 325.
4 Pei P, Chen D, Wu Z, et al. Applied Energy, 2019, 254, 113730.
5 Weber A Z, Newman J. Journal of the Electrochemical Society, 2005, 152(4), A677
6 Pasaogullari U, Wang C Y, Chen K S. Journal of the Electrochemical Society, 2005, 152(8), A1574.
7 Owejan J E, Yu P T, Makharia R. Ecs Transactions, 2007, 11(1), 1049.
8 Takeuchi N, Fuller T F. Journal of the Electrochemical Society, 2008, 157(1),B135.
9 Lim K H, Lee W H, Jeong Y, et al. Journal of Power Sources, 2017, 164(14), F1580.
10 Hong B K, Mandal P, Oh J G, et al. Journal of Power Sources, 2016, 328, 280.
11 Qin C, Wang J, Yang D, et al. Catalysts, 2016, 6(12), 197.
12 Wei Y Q, Zhao Y L,Yun H T. Journal of Chongqing University of Technology(Natural Science),2021,35(1),75(in Chinese).
魏永琪, 赵玉兰, 贠海涛. 重庆理工大学学报(自然科学), 2021,35(1),75.
13 Taniguchi A, Akita T, Yasuda K, et al. Journal of Power Sources, 2004, 130(1/2), 42.
14 Wang Y, Zhou C, Xie X, et al. International Journal of Hydrogen Energy, 2020, 45(1), 996.
15 Kang J, Jung D W, Park S, et al. International Journal of Hydrogen Energy, 2010, 35(8), 3727.
16 Chen H, Zhao X, Zhang T, et al. Energy Conversion and Management, 2019, 182(15), 282.
17 Cai C, Wan Z, Rao Y, et al. Journal of Power Sources, 2020, 455(15), 227952.
18 Yu S, Li X, Liu S, et al. RSC Advances, 2014, 4(8), 3852.
19 Ha T, Cho J, Park J, et al. International Journal of Hydrogen Energy, 2011, 36(19), 12436.
20 Wang Q, Chen G Y, Li M F,et al. PRC patent, CN111122428A, 2019.
21 Zhou J F,Cai C, Rao Y, et al. Chinese Journal of Power Sources, 2020,44(8),1126(in Chinese).
周江峰,蔡超,饶妍,等.电源技术,2020, 44(8),1126.
22 Hao J, Yu S, Jiang Y, et al. Journal of Electroanalytical Chemistry, 2015, 756, 201.
23 Tang Q, Han M,Yi B L, et al. Journal of Electrochemistry,2001(3), 351(in Chinese).
唐倩,韩明,衣宝廉,等.电化学,2001(3),351.
24 Knights S D, Colbow K M, St-Pierre J, et al. Journal of Power Sources, 2004, 127(1-2), 127.
25 Siroma Z, Fujiwara N, Ioroi T, et al. Journal of Power Sources, 2004, 126(1-2), 41.
26 Cho J, Park J, Oh H, et al. Applied Energy, 2013, 111, 300.
27 Zhang X, Yang Y, Zhang X, et al. Journal of Power Sources, 2020, 449, 227580.
28 Jang I, Hwang I, Tak Y, et al. Electrochimica Acta, 2013, 90, 148.
29 Avasarala B, Moore R, Haldar P. Electrochimica Acta, 2010, 55(16), 4765.
[1] 朱烨森, 刘梁, 徐云泽, 王晓娜, 刘刚, 黄一. 溶液pH和温度对X65管线钢焊缝非均匀腐蚀的影响[J]. 材料导报, 2022, 36(1): 20090152-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed