Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 198-202    https://doi.org/10.11896/j.issn.1005-023X.2018.02.008
  物理   材料研究 |材料 |
羽毛角蛋白/PVA复合纳米纤维膜的制备及表征
何明1,窦瑶1,陈曼2,尹国强2,崔英德1,3,陈循军2
1 西北工业大学材料学院,西安 710072
2 仲恺农业工程学院化学化工学院,广州 510225
3 广州科技职业技术学院,广州 510550
Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning
Ming HE1,Yao DOU1,Man CHEN2,Guoqiang YIN2,Yingde CUI1,3,Xunjun CHEN2
1 School of Materials Science and Engineering, Northwestern Polytechnical University,Xi’an 710072;
2 College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering, Guangzhou 510225
3 Guangzhou Vocational College of Science and Technology,Guangzhou 510550
下载:  全 文 ( PDF ) ( 2414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

以羽毛角蛋白(FK)和聚乙烯醇(PVA)为原料,水为溶剂,通过静电纺丝技术制备了FK/PVA复合纳米纤维膜。探讨了复合纳米纤维中FK与PVA的相容性,研究了FK的添加对纤维膜微观形貌、结晶度、热稳定性、亲水性等性能的影响。SEM结果表明,在聚合物总质量分数为14%的条件下制备的FK/PVA复合纳米纤维,表面平整光滑,平均直径为250~320 nm,FK含量越大,直径越小。FTIR结果表明,FK与PVA具有良好的相容性,分子间存在氢键作用力。XRD结果表明,FK的加入破坏了PVA分子的规整排列,复合纳米纤维膜的结晶度下降。TG分析与接触角测试结果表明,随着体系中FK配比的增大,复合纳米纤维膜的热稳定性和亲水性均得到提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何明
窦瑶
陈曼
尹国强
崔英德
陈循军
关键词:  羽毛角蛋白  聚乙烯醇  静电纺丝  纳米纤维    
Abstract: 

Feather keratin (FK)/PVA composite nanofibrous membranes were prepared through an electrospinning process, using water as solvent. The interaction and compatibility between FK and PVA, as well as the effect of incorporating FK on the morphology, crystallinity, thermal stability and hydrophilicity of the composite nanofibrous membranes were evaluated. At a total polymer concentration of 14%, the prepared nanofibers were smooth, bead-free and the average diameter was in the range of 250—320 nm. The more FK was added, the lower fiber diameter was obtained. The favorable compatibility and strong interactions between FK and PVA were confirmed by FTIR analysis. XRD analysis indicated that the arrangement of PVA chain in the composite nanofibrous membranes was disturbed by the incorporation of FK, resulting the decrease of crystallinity. According to TG and contact angle analysis, the thermal stability and hydrophilicity of the composite nanofibers were both enhanced by increasing the FK content.

Key words:  feather keratin    poly(vinyl alcohol)    electrospinning    nanofibers
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TQ342.94  
基金资助: 广东省科技计划项目(2013B010403029);广东省自然科学基金(2016A030313371)
引用本文:    
何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning. Materials Reports, 2018, 32(2): 198-202.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.008  或          https://www.mater-rep.com/CN/Y2018/V32/I2/198
FK/PVA
ratio
Average diameters of nanofibers/nm
14% 12% 10%
0/10 316±43 221±31 197±34
1/9 307±53 163±39 141±28
2/8 260±48 137±33 140±24
3/7 252±49 149±48 142±21
4/6 256±44 159±45 91±36
表1  FK/PVA纳米纤维膜的平均直径
图1  FK/PVA纳米纤维膜的扫描电镜图
Samples Wavenumber/cm-1
Stretching
vibration of
N-H and O-H
Amide
Amide
Amide
0/10 3 320
1/9 3 298 1 647 1 565 1 255
2/8 3 295 1 645 1 558 1 253
3/7 3 296 1 643 1 545 1 246
4/6 3 297 1 640 1 545 1 244
FK powders 3 281 1 655 1 535 1 226
表2  FK/PVA复合纳米纤维膜与FK粉末的红外特征峰分析
图2  FK/PVA复合纳米纤维膜与FK粉末的红外光谱
图3  FK/PVA复合纳米纤维膜与FK粉末的XRD谱
Samples Mass loss/%
200 ℃ 350 ℃ 500 ℃ 700 ℃
0/10 3.6 81.1 96.2 97.2
1/9 6.1 67.6 88.0 90.0
3/7 7.2 65.0 84.4 87.1
FK powders 8.9 58.5 81.2 84.6
表3  FK/PVA复合纳米纤维膜与FK粉末的TG分析
图4  FK/PVA复合纳米纤维膜与FK粉末的TG曲线
图5  FK/PVA复合纳米纤维膜的接触角
1 Agarwal S, Greiner A, Wendorff J H . Electrospinning of manmade and biopolymer nanofibers-progress in techniques,materials,and applications[J]. Advanced Functional Materials, 2010,19(19):2863.
2 Agarwal S, Wendorff J H, Greiner A . Progress in the field of electrospinning for tissue engineering applications[J]. Advanced Materials, 2009,21(32-33):3343.
3 Yen K C, Chen C Y, Huang J Y , et al. Fabrication of keratin/fibroin membranes by electrospinning for vascular tissue engineering[J]. Journal of Materials Chemistry B, 2016,4(2):237.
4 Liu Y, Yu X, Li J , et al. Fabrication and properties of high-content keratin/poly (ethylene oxide) blend nanofibers using two-step cross-linking process[J]. Journal of Nanomaterials, 2015,2015(10):1.
5 Varesano A, Vineis C, Tonetti C , et al. Chemical and physical modifications of electrospun keratin nanofibers induced by heating treatments[J]. Journal of Applied Polymer Science, 2014,131(15):40532.
6 Zoccola M, Aluigi A, Vineis C , et al. Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends[J]. Biomacromolecules, 2008,9(10):2819.
7 Fan J, Lei T D, Li J , et al. High protein content keratin/poly (ethy-lene oxide) nanofibers crosslinked in oxygen atmosphere and its cell culture[J]. Materials and Design, 2016,104:60.
8 Cho D, Nnadi O, Netravali A , et al. Electrospun hybrid soy protein/PVA fibers[J]. Macromolecular Materials and Engineering, 2010,295(8):763.
9 Zhang M, Liu Y J, Yi H L , et al. Electrospun zein/PVA fibrous mats as three-dimensional surface for embryonic stem cell culture[J]. Journal of the Textile Institute, 2014,105(3):246.
10 Li S, Yang X H . Fabrication and characterization of electrospun wool keratin/poly(vinyl alcohol) blend nanofibers[J]. Advances in Materials Science and Engineering, 2014,2014(3):1.
11 Choi J, Panthi G, Liu Y , et al. Keratin/poly (vinyl alcohol) blended nanofibers with high optical transmittance[J]. Polymer, 2015,58(1):146.
12 Song N B, Lee J H, Mijan M A , et al. Development of a chicken feather protein film containing clove oil and its application in smoked salmon packaging[J]. LWT-Food Science and Technology, 2014,57(2):453.
13 Xu X Z, Jiang L, Zhou Z P , et al. Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes[J]. ACS Applied Materials and Interfaces, 2012,4(8):4331.
14 Edwards A, Jarvis D, Hopkins T , et al. Poly(caprolactone)/keratin-based composite nanofibers for biomedical applications[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2015,103(1):21.
15 Wang H Y, Yin G Q, Feng G Z , et al. Preparation,structure and properties of blend films of feather keratin and sodium carboxy methyl cellulose[J]. Materials Review B:Research Papers, 2014,28(8):67(in Chinese).
16 王海洋, 尹国强, 冯光炷 , 等. 羽毛角蛋白/CMC复合膜的制备及结构和性能[J]. 材料导报:研究篇, 2014,28(8):67.
17 Islam M S, Karim M R . Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010,366(1-3):135.
[1] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[2] 何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松. Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能[J]. 材料导报, 2024, 38(8): 22070274-6.
[3] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[4] 周美玲, 杜姗, 欧康康, 代云玲, 齐琨, 王华平. 纳米纤维基智能创伤敷料的研究进展[J]. 材料导报, 2024, 38(20): 23060224-11.
[5] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[6] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[7] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[8] 龙娟, 李宇展, 李志强, 钟土华. 纳米纤维素的点击反应改性及应用研究进展[J]. 材料导报, 2024, 38(17): 23050159-10.
[9] 张亚玲, 程国君, 唐忠锋, 万祥龙, 丁国新, 王周锋. PVA基复合材料导热性能的研究进展[J]. 材料导报, 2024, 38(16): 23060217-10.
[10] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[11] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[12] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[13] 孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed