Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23030233-9    https://doi.org/10.11896/cldb.23030233
  无机非金属及其复合材料 |
海泡石纤维增强二氧化硅气凝胶的制备及性能
李思盈, 周超*
重庆交通大学材料科学与工程学院,重庆 400074
Preparation and Properties of Sepiolite Fiber Enhanced Silica Aerogel
LI Siying, ZHOU Chao*
School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 49408KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 溶胶-凝胶法常压制备二氧化硅(SiO2)气凝胶的产率与性能不足问题限制了其工业化规模应用。本工作以海泡石纳米纤维作为增强体,正硅酸四乙酯作为硅源前驱体,三甲基氯硅烷作为改性剂,采用溶胶-凝胶法、常压干燥制备了海泡石纤维/二氧化硅气凝胶块体材料,测试了力学性能、热性能、火安全性等,并进行了孔隙结构、红外光谱与微观形貌的分析表征。海泡石的纤维骨架可抑制气凝胶块体收缩开裂;纤维在溶胶形成阶段具有异相形核作用,使颗粒细化并提高气凝胶的比表面积,改变孔隙结构;纤维的引入提高了气凝胶的力学性能、高温与烧蚀稳定性和火安全性,降低了导热系数。块体海泡石纤维/二氧化硅气凝胶导热系数可达0.012 8 W/(m·K),抗压强度最高为1.20 MPa,阻燃均为V-0级,1 300 ℃烧蚀后形状保持稳定,综合性能优异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李思盈
周超
关键词:  二氧化硅气凝胶  海泡石纳米纤维  力学性能  热性能  火安全性    
Abstract: The efficiency and performance of silica (SiO2) aerogel prepared by sol-gel method under atmospheric pressure are insufficient, which limits its industrial scale application. In this work, sepiolite nanofibers were used as enhancement, tetraethyl orthosilicate was used as silicon source precursor, and trimethylchlorosilane was used as modifier. Sepiolite fiber/silica aerogel bulk materials were prepared by sol-gel method and atmospheric drying. The mechanical properties, thermal properties and fire safety properties were tested, and the pore structure, infrared spectrum and micro-morphology were analyzed and characterized. The fiber skeleton of sepiolite can inhibit the shrinkage and cracking of aerogel block. Fibers have heterogeneous nucleation in the sol formation stage, which refines the particles, increases the specific surface area of aerogels and changes the pore structure. The introduction of fiber improves the mechanical properties, high temperature and ablation stability and fire safety properties, and reduces the thermal conductivity. The thermal conductivity of mass sepiolite fiber/silica aerogel can reach 0.012 8 W/(m·K), the compressive strength is 1.20 MPa, the flame retardancy is V-0, the shape remains stable after ablation at 1 300 ℃, and the comprehensive performance is excellent.
Key words:  silica aerogel    sepiolite nanofibers    mechanical property    thermal property    fire safety property
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51778096);在渝高校与中科院所属所合作项目(HZ2021009)
通讯作者:  *周超,通信作者,1989年于武汉工业大学获复合材料专业学士学位,2006年聘任材料学院副教授,现任教于重庆交通大学材料科学与工程学院,主要从事纳米材料、聚合物基复合材料、土木工程材料等方面的教学、研究工作,参研国家自然科学基金项目5项,发表论文10余篇,以第一发明人获专利授权4项,第十届“挑战杯”全国大学生课外学术科技作品竞赛优秀指导教师。494280305@qq.com   
作者简介:  李思盈,2019年于重庆科技学院获学士学位,2023年毕业于重庆交通大学材料科学与工程学院,获材料与化工硕士学位,在周超副教授的指导下进行研究,主要从事纳米材料、复合材料等研究。
引用本文:    
李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
LI Siying, ZHOU Chao. Preparation and Properties of Sepiolite Fiber Enhanced Silica Aerogel. Materials Reports, 2024, 38(19): 23030233-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030233  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23030233
1 Kistler S S. Nature, 1931, 127(3211), 741.
2 Rashid A B, Shishir S I, Mahfuz M A, et al. Particle & Particle Systems Characterization, 2023, 40(6), 2200186.
3 Chen K. Preparation and properties of boehmite fiber-doped silica aerogels. Master's Thesis, University of Chinese Academy of Sciences (Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences), China, 2019(in Chinese).
陈凯. 勃姆石纤维掺杂二氧化硅气凝胶的制备与性能研究. 硕士学位论文, 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2019.
4 Li S Y, Zhou C, Li C Q, et al. Applied Chemical Industry, 2023, 52(3), 726(in Chinese).
李思盈, 周超, 李传强, 等. 应用化工, 2023, 52(3), 726.
5 Zhang J, Yin B, Liu W X, et al. Chemical Journal of Chinese Universities, 2022, 43(11), 108(in Chinese).
张洁, 银波, 刘玮欣, 等. 高等学校化学学报, 2022, 43(11), 108.
6 Iswar S, Malfait W J, Balog S, et al. Microporous and Mesoporous Materials, 2017, 241, 293.
7 Li X, Wang Q, Li H, et al. Journal of Sol-Gel Science and Technology, 2013, 67, 646.
8 Wang H, Yan X, Jin X, et al. Composites Communications, 2022, 35, 101285.
9 Lyu J, Liu Z, Wu X, et al. ACS Nano, 2019, 13(2), 2236.
10 Modest M F. Radiative heat transfer, Academic Press, San Diego, CA, 2003, pp.465.
11 Wang J, Kuhn J, Lu X. Journal of Non-crystalline Solids, 1995, 186, 296.
12 Jennings S G. Journal of Aerosol Science, 1988, 19(2), 159.
13 Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental organic chemistry, John Wiley & Sons, 2016.
14 Ding S H. Preparation of silica aerogels and study on their heat transfer models. Master's Thesis, Changsha University of Science and Technology, China, 2018(in Chinese).
丁舒怀. 二氧化硅气凝胶的制备及其传热模型的研究. 硕士学位论文, 长沙理工大学, 2018.
15 He Y L, Xie T. Applied Thermal Engineering, 2015, 81, 28.
16 Zimmermann M V G, Zattera A J. Journal of Porous Materials, 2021, 28(5), 1325.
17 Okkerse C, Linsen B G. Ertl G, 1970, 142, 107.
18 Zhuravlev L T. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173(1-3), 1.
19 Huang Y, He S, Chen G, et al. Journal of Sol-Gel Science and Technology, 2018, 88, 129.
20 Yan M, Fu Y, Pan Y, et al. Composites Part B: Engineering, 2022, 230, 109496.
21 Farooq M, Sipponen M H, Seppálá A, et al. ACS Applied Materials & Interfaces, 2018, 10(32), 27407.
22 Yang J Y, Xia Y, Zhao J, et al. Chinese Journal of Polymer Science, 2020, 38, 1294.
23 Yin R, Cheng H, Hong C, et al. Composites Part A: Applied Science and Manufacturing, 2017, 101, 500.
24 Liu F, Jiang Y, Peng F, et al. Chemical Engineering Journal, 2023, 461, 141721.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed