Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22070274-6    https://doi.org/10.11896/cldb.22070274
  高分子与聚合物基复合材料 |
Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能
何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松*
北京石油化工学院新材料与化工学院,特种弹性体复合材料北京市重点实验室,北京 102617
Preparation and Properties of Tb3+ Doped PVDF/PLLA Electrospun Multifunctional Piezoelectric Nanofibers
HE Shifeng, XUE Rui, HE Yongqing, HUANG Yan, WU Yibo, SHI Qisong*
Beijing Key Laboratory of Special Elastomer Composite Materials, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
下载:  全 文 ( PDF ) ( 18589KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用静电纺丝方法,将聚偏氟乙烯(PVDF)与少量结晶聚合物(聚-L-乳酸(PLLA))共混,并将共混体系掺入稀土荧光配合物(Tb(TTA)3-(TPPO)2)中制备出兼具黄绿色荧光和压电功能的复合纳米纤维。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、原子力显微镜(AFM)、X射线衍射(XRD)光谱、差示扫描量热(DSC)仪、荧光光谱(FL)仪、灵敏度测试等表征手段研究了共混体系和稀土荧光配合物对PVDF复合纳米纤维形貌、结晶结构、灵敏度、荧光性能等的影响。结果表明,添加5%(质量分数)的荧光配合物可以使复合纳米纤维的β相含量达到95%,在0~1 kPa的压力下,由复合纳米纤维制成的传感器表现出优异的灵敏度(0.42 kPa-1)。同时,传感器的压电输出也具有良好的表现,输出电压和输出电流分别为2.5 V和800 nA。这种兼具黄绿色荧光及压电功能的复合纳米纤维有望应用于压电传感器、运动监测系统和生物电子皮肤等领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何诗峰
薛蕊
贺永晴
黄妍
伍一波
师奇松
关键词:  静电纺丝  荧光  压电  共混    
Abstract: Electrospinning was used to blend polyvinylidene fluoride (PVDF) with a small amount of crystalline polymer (poly-L-lactic acid (PLLA)) and doped with a rare earth fluorescent complex (Tb(TTA)3(TPPO)2) prepared composite nanofibers with both yellow-green fluorescence and piezoelectric function. The effects of blend systems and rare earth complexes on the morphology, crystal structure, sensitivity, fluorescence pro-perties and other properties of PVDF composite nanofibers were studied by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscope (AFM), X-ray diffraction (XRD) spectroscopy, differential scanning calorimetry (DSC), fluorescence (FL) and sensitivity and other characterization methods. The results show that the addition of 5wt% of the fluorescent complex can make the β phase content of the composite nanofibers reach 95%. The sensor made of composite nanofibers exhibites excellent sensitivity (0.42 kPa-1) at a pressure of 0—1 kPa. At the same time, the piezoelectric output of the sensor also has a good performance, output voltage and output current are 2.5 V and 800 nA, respectively. The composite nanofibers with both yellow-green fluorescence and piezoelectric functions are expected to be applied in piezoelectric sensors, motion monitoring systems, bioelectronic skin and other fields.
Key words:  electrospinning    fluorescence    piezoelectricity    blend
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  O631  
  O614.33  
基金资助: 国家自然科学基金(52073033)
通讯作者:  *师奇松,博士,北京石油化工学院副教授、硕士研究生导师。2007年毕业于中国科学院化学研究所,获理学博士学位,2010年在美国明尼苏达大学进修学习。2010年入选北京市中青年骨干教师,2014年入选北京市属高校青年拔尖人才,2015年入选北京石油化工学院优秀学科带头人。已发表学术论文50余篇,其中被SCI/EI检索30余篇。曾获中国石油和化学工业联合会科技进步三等奖,中国石油和化工教育研究论文三等奖,中国发明协会发明创业奖创新奖二等奖。从事微纳米纤维基高性能材料的制备、结构调控及功能化研究,电活性智能材料、智能纤维基柔性能源材料及器件的设计制备。shiqisong@bipt.edu.cn   
作者简介:  何诗峰,于2020年9月考入北京石油化工学院,攻读材料与化工硕士学位,在师奇松副教授的指导下进行研究。研究方向为智能纤维基柔性能源材料及器件的设计制备。
引用本文:    
何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松. Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能[J]. 材料导报, 2024, 38(8): 22070274-6.
HE Shifeng, XUE Rui, HE Yongqing, HUANG Yan, WU Yibo, SHI Qisong. Preparation and Properties of Tb3+ Doped PVDF/PLLA Electrospun Multifunctional Piezoelectric Nanofibers. Materials Reports, 2024, 38(8): 22070274-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070274  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22070274
1 Deng W L, Yang T, Jin L, et al. Nano Energy, 2019, 55, 516.
2 Najjar R, Luo Y, Jao D, et al. Polymers, 2017, 9, 479.
3 Fu G M, Pan G X, Wu X T, et al. Polymer Materials Science and Engineering, 2021, 37(8), 154(in Chinese).
付贵茂, 潘顾鑫, 吴晓彤, 等. 高分子材料科学与工程, 2021, 37(8), 154.
4 Fryczkowski R, Fryczkowska B, Biniaś W, et al. Composites Science and Technology, 2013, 89, 186.
5 Mukri N I, Velayutham T S, Gan W C, et al. Materials Today: Procee-dings, 2018, 5, S130.
6 Dong W Y, Wang H T, Ren F L, et al. ACS Sustainable Chemistry & Engineering, 2016, 4, 4480.
7 Mishra S, Sahoo R, Unnikrishnan L, et al. Materials Today Communications, 2021, 26, 101958.
8 Lu P, Wang Y X, Huang L J, et al. Nanomaterials, 2020, 10, 694.
9 Zhao Y X, Chen Y J, Pan G X, et al. Chemical Journal of Chinese Universities, 2019, 40(4), 824(in Chinese).
赵宇轩, 陈艳君, 潘顾鑫, 等. 高等学校化学学报, 2019, 40(4), 824.
10 Martins P, Lopes A C, Lanceros-Mendez S. Progress in Polymer Science, 2014, 39, 683.
11 Fu G M, Shi Q S, He Y Q, et al. Polymer, 2022, 240, 124496.
12 Cai X M, Lei T P, Sun D H, et al. RSC Advances, 2017, 7, 15382.
13 Yang L, Zhao Q Y, Shen M X, et al. Materials Reports, 2020, 34(24), 24145(in Chinese).
杨路, 赵秋莹, 申明霞, 等. 材料导报, 2020, 34(24), 24145.
14 Singh D, Choudhary A, Garg A. ACS Applied Materials & Interfaces, 2018, 10, 2793.
15 Hernandez C, Gupta S K, Zuniga J P, et al. Journal of Materials Science & Technology, 2021, 66, 103.
16 Cacciotti I, Bianco A, Pezzotti G, et al. Materials Chemistry and Phy-sics, 2011, 126, 532.
[1] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[2] 章博, 黄飞翔, 谢凤鸣, 杨耀祖, 胡英元, 赵鑫. 绿光到深红光的有效调控:二苯并吡啶并喹喔啉类热激活延迟荧光材料[J]. 材料导报, 2025, 39(1): 23110162-7.
[3] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[4] 张昌松, 王向阳, 魏立柱, 王如鹏. 折叠结构的PVDF/BTO复合薄膜压电纳米发电机的制备及性能研究[J]. 材料导报, 2024, 38(6): 22080132-6.
[5] 王昊煜, 刘哲, 贺思佳, 张健, 杭格格, 卫嬴, 汪秀琛. 可穿戴纤维基能源转换器件研究进展[J]. 材料导报, 2024, 38(3): 22060149-10.
[6] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[7] 周卫新, 娄朝刚. 放电等离子烧结Ce、Yb共掺钇铝石榴石稀土荧光粉及其在光伏电池中的应用[J]. 材料导报, 2024, 38(22): 24040014-5.
[8] 孙万杰, 石雨欣, 丁健翔, 任万滨, 盘志雄, 张培根, 孙正明. 新型Ti2Cd增强银基电触头材料的制备及抗电弧侵蚀特性[J]. 材料导报, 2024, 38(21): 23070098-7.
[9] 周美玲, 杜姗, 欧康康, 代云玲, 齐琨, 王华平. 纳米纤维基智能创伤敷料的研究进展[J]. 材料导报, 2024, 38(20): 23060224-11.
[10] 雷经发, 沈强, 刘涛, 孙虹, 尹志强. 聚氯乙烯/热塑性聚氨酯共混合金的静动态力学性能及微观结构分析[J]. 材料导报, 2024, 38(19): 23010114-6.
[11] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[12] 郭丁萌, 李晓玉, 孙天懿, 连海兰. 热敏型碳点作为温度传感材料的研究进展[J]. 材料导报, 2024, 38(18): 23040116-11.
[13] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[14] 罗婷, 王嘉昕, 谢斌, 艾长发, 颜川奇. 不同温拌剂对高黏沥青老化性能的影响[J]. 材料导报, 2024, 38(13): 22120076-9.
[15] 梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed