Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22120076-9    https://doi.org/10.11896/cldb.22120076
  无机非金属及其复合材料 |
不同温拌剂对高黏沥青老化性能的影响
罗婷1,2, 王嘉昕1,2, 谢斌1,2, 艾长发1,2, 颜川奇1,2,*
1 西南交通大学土木工程学院,成都 610031
2 道路工程四川省重点实验室,成都 610031
Effect of Different Warm Mixes on the Aging Performance of High Viscosity Asphalt
LUO Ting1,2, WANG Jiaxin1,2, XIE Bin1,2, AI Changfa1,2, YAN Chuanqi1,2,*
1 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 Highway Engineering Key Laboratory of Sichuan Province, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 17612KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究不同温拌剂对高黏沥青老化性能的影响,以不同温拌剂对高黏沥青压实温度降幅10℃左右为标准,确定不同温拌剂掺量,并按规范要求进行短期、长期老化,再通过温度扫描、蠕变恢复试验、线性振幅扫描试验研究不同温拌剂对高黏沥青老化后黏弹性、蠕变恢复性能等流变性能的影响,并结合红外光谱、荧光显微试验进行机理分析。研究表明,温拌剂Evotherm及Waste-Cooking-Oil(WCO)因热稳定性较差,在短期老化阶段就被氧化分解,二者对高黏沥青老化性能的影响主要集中在短期老化阶段,长期老化阶段它们对高黏沥青性能基本无影响。在短期老化阶段温拌剂Evotherm及WCO的加入能够增强高黏沥青流动性能,使高黏沥青老化程度加深,沥青蠕变恢复能力、抗疲劳性能均下降。温拌剂Sasobit因其抗老化性能较优,在老化后仍存在于沥青中,可使沥青蠕变恢复性能有较大提升,从而使得沥青在小应变情况下抗疲劳性能增强,同时荧光显微显示温拌剂Sasobit在常温下能够与均匀分布在沥青中的苯乙烯-丁二烯嵌段共聚物(Styreneic-block-copolymer,SBS)颗粒相互联结,形成网状晶格结构,使高黏沥青具有更强的高温稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗婷
王嘉昕
谢斌
艾长发
颜川奇
关键词:  温拌剂  老化性能  荧光显微  黏弹性    
Abstract: To examine the effect of different warm mixes on the aging performance of high viscosity asphalt, the compaction temperature drop of approximately 10 ℃ for different warm mixes on high viscosity asphalt was used as a standard to determine the amount of different warm mixes required. According to the specification requirements for short-term and long-term aging, and then through the temperature sweep, creep recovery test, LAS test to study the effect of different warm mixes on the aging of high viscosity asphalt viscoelasticity, creep recovery performance and other rheological properties, and the study was combined with infrared spectroscopy and fluorescence microscopy tests to analyze the mechanism. The study showed that the warm mixes Evotherm and Waste-Cooking-Oil (WCO) were oxidized and decomposed in the short-term aging stage due to their poor thermal stability, so the effect of these two on the aging performance of high-viscosity asphalt was mainly concentrated in the short-term aging stage, while the long-term aging stage had no effect on the performance of high-viscosity asphalt. In the short-term aging stage, the addition of warm mix Evotherm and WCO can enhance the mobility of high viscous asphalt, so that the high viscous asphalt aging degree deepened, asphalt creep recovery ability, fatigue resistance are reduced. The warm mix agent Sasobit is still present in the asphalt after aging due to its better anti-aging properties, which has a greater improvement on the asphalt creep recovery performance and makes the asphalt fatigue resistance increase under small strains, while fluorescence microscopy shows that the warm mix agent Sasobit can associate with the SBS particles uniformly distributed in the asphalt at room temperature to form a mesh lattice structure, which makes the high viscosity asphalt have stronger High temperature stability.
Key words:  warm mixes    aging performance    FM    viscoelasticity
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  U414.1  
基金资助: 国家自然科学基金(52008353;51908426);中国博士后科学基金(BX20190240;2019M660097);四川省青年科技创新研究团队(2021JDTD0023;2022JDTD0015);成都科技创新研发项目(2021-YF05-01175-SN)
通讯作者:  *颜川奇,西南交通大学副教授、硕士研究生导师。主要从事高性能改性沥青材料表征与研发方面的研究,以第一作者或通信作者身份发表SCI收录论文20余篇。Ycq@swjtu.edu.cn   
作者简介:  罗婷,西南交通大学硕士研究生,主要从事沥青路面材料方面的研究。
引用本文:    
罗婷, 王嘉昕, 谢斌, 艾长发, 颜川奇. 不同温拌剂对高黏沥青老化性能的影响[J]. 材料导报, 2024, 38(13): 22120076-9.
LUO Ting, WANG Jiaxin, XIE Bin, AI Changfa, YAN Chuanqi. Effect of Different Warm Mixes on the Aging Performance of High Viscosity Asphalt. Materials Reports, 2024, 38(13): 22120076-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120076  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22120076
1 Almeida-Costa A, Benta A. Journal of Cleaner Production, 2016, 112, 2308.
2 Qu L, Gao Y, Yao H, et al. Advances in Civil Engineering, DOI:10.1155/2019/6070685.
3 You Z, Go S W. International Journal of Pavement research and Techno-logy, 2008, 1(1), 34.
4 Pérez-Martínez M, Moreno-Navarro F, Martín-Marín J, et al. Journal of Cleaner Production, 2014, 65, 374.
5 Rodriguez-Alloza A M, Malik A, Lenzen M, et al. Journal of Cleaner Production, 2015, 90, 171.
6 Sobhi S, Yousefi A, Behnood A. Construction and Building Materials, 2020, 238, 117676.
7 Capitão S D, Picado-Santos L G, Martinho F. Construction and Building Materials, 2012, 36, 1016.
8 Behnood A. Journal of Cleaner Production, 2020, 259, 120817.
9 Zhang J T, Li K. Advances in Materials Science and Engineering, 2019, 2019, 1.
10 Yang P, Liu J. Petroleum Science & Technology, 2018, 36(12), 813.
11 Kataware A V, Singh D. Construction & Building Materials, 2017, 146, 436.
12 Zhang K, Luo Y, Chen F, et al. Construction and Building Materials, 2020, 241, 118017.
13 Li Q S, Zhang H L, Shi C J, et al. Journal of Cleaner Production, 2021, 326, 129405.
14 Safaei F, Lee J, Nascimento L A H, et al. Road Materials and Pavement Design, 2014, 15(1), 45.
15 Abu Qtaish, Lana, et al. Journal of Materials in Civil Engineering, 2018, 30(9), 04018213.
16 Kim H, Lee S J, Amirkhanian S N, et al. Journal of Materials in Civil Engineering, 2013, 25(1), 1.
17 Design guide and construction specifications for porous asphalt pavement:DB51/T 2601-2019, 2019.
公路排水沥青路面设计与施工技术指南:DB51/T 2601-2019, 2019.
18 Wang Y L, Lu J, Liang P F, et al. Materials Reports, 2023, 37(16), 22010171(in Chinese).
王言磊, 陆军, 梁鹏飞, 等. 材料导报, 2023, 37(16), 22010171.
19 A H Y, B Z L, C Z D, et al. Construction and Building Materials, 2018, 175, 392.
20 Maria Enrica Di Pietro, Alberto Mannu, et al. Processes, 2020, 8(4), 410.
21 Venu B B, Vaibhav V G. Journal of Renewable and Sustainable Energy, 2013, 5, 063104.
22 Jamshidi A, Hamzah M O, You Z. Construction and Building Materials, 2013, 38, 530.
23 Enieb M, Diab A. International Journal of Pavement Research and Technology, 2017, 10(2), 148.
24 Mouillet V, Lamontagne J, Durrieu F, et al. Fuel, 2008, 87(7), 1270.
25 Zhang D, Chen Z, Zhang H, et al. Construction and Building Materials, 2018, 188, 409.
26 Zhang D, Zhang H, Zhu C, et al. Construction and Building Materials, 2017, 144, 423.
27 Yongli Z, Fan G U, Jing X U, et al. Journal of Wuhan University of Technology: Materials Science English Edition, 2010(6), 6.
28 Syroezhko A M, Baranov M A, Ivanov S N, et al. Coke and Chemistry, 2011, 54(1), 26.
29 Li K, Guo D D. Advanced Materials Research, 2013, 753, 819.
30 Chen Z, Zhang H, Duan H, et al. Construction and Building Materials, 2020, 260, 119835.
31 Dong G. Performance and mechanism analysis of polyphosphoric acid and polyphosphoric acid/polymer composite modified asphalt. Ph.D. Thesis, Chang'an University, China, 2018(in Chinese).
董刚. 多聚磷酸及多聚磷酸/聚合物复合改性沥青的性能和机理分析. 博士学位论文, 长安大学, 2018.
[1] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[2] 郑家桢, 裴海华, 张贵才, 单景玲, 蒋平. 改性纳米硅颗粒强化高温泡沫的性能及机理研究[J]. 材料导报, 2023, 37(7): 21100066-5.
[3] 常郗文, 龙永双, 仪明伟, 王晨, 肖月. 道路沥青挥发性有机化合物减排材料的研究进展[J]. 材料导报, 2023, 37(20): 22040399-16.
[4] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[5] 王言磊, 陆军, 梁鹏飞, 罗婷, 颜川奇. 不同温拌剂对高黏沥青流变及微观特性影响研究[J]. 材料导报, 2023, 37(16): 22010171-6.
[6] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[7] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[8] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[9] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[10] 胡志德, 赵湖钧, 王大伟. 羰基铁粉对锂基磁流变脂动态流变行为的影响[J]. 材料导报, 2019, 33(Z2): 630-633.
[11] 乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198.
[12] 王岚, 崔世超, 常春清. 基于流变学与黏弹性理论的温拌胶粉改性沥青的高温性能研究[J]. 材料导报, 2019, 33(14): 2386-2391.
[13] 于江, 程龙, 李林萍, 叶奋, 宋卿卿. KSHD温拌剂对新疆岩沥青改性沥青老化动力特性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2418-2424.
[14] 武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed