Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 22090054-8    https://doi.org/10.11896/cldb.22090054
  高分子与聚合物基复合材料 |
纳米粒子改性橡胶沥青抗老化性能研究
彭博1, 凌天清2,*, 葛豪2
1 重庆交通大学材料科学与工程学院,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
Study on Anti-aging Properties of Nanoparticle Modified Rubber Asphalt
PENG Bo1, LING Tianqing2,*, GE Hao2
1 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 7288KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青老化是铺装道路劣化的重要因素之一,严重缩短沥青混凝土路面的使用寿命,增加维护成本,导致碳排放增多。在低碳、环保政策的驱动下,提高沥青抗老化性、延长沥青混凝土路面使用寿命成为亟待解决的问题。无机纳米粒子的高活性、高表面能等特点使其具有改善沥青抗老化性的可能性,故本工作以废弃胶粉改性沥青为基体,以不同掺量(1%、2%、3%,质量分数,下同)掺入纳米ZnO、纳米SiO2和纳米TiO2改性剂制备复配改性沥青,探究无机纳米粒子对沥青抗老化性能的影响及作用机理。试验结果显示:掺入无机纳米粒子的改性沥青的抗老化性有显著提升,其中掺入2%纳米TiO2时,改性沥青的抗老化性能的改善效果最佳,在经过光氧老化后残留针入度比改性前提升了13.2%,软化点增量降低了60.7%。无机纳米粒子的掺入提高了沥青的紫外光吸收能力,并优化了其内部峰结构,从而提升沥青的粘弹性及高温性能,增强其抗老化性。该试验结果对制备抗老化沥青、长寿命沥青混凝土路面有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭博
凌天清
葛豪
关键词:  无机纳米粒子  抗老化性能  流变性能  微观形貌    
Abstract: Asphalt aging is one of the important factors for the deterioration of paved roads, which seriously reduces the service life of asphalt concrete pavements, increases maintenance costs, and leads to more carbon emissions. Driven by low-carbon and environmental protection policies, improving the aging resistance of asphalt and prolonging the service life of asphalt concrete pavement have become an urgent problem to be solved. The high activity and high display energy of inorganic nanoparticles make it possible to improve the aging resistance of asphalt. The high activity and high display energy of inorganic nanoparticles make it possible to improve the aging resistance of asphalt. Therefore, in this study, waste rubber powder modified asphalt was used as the matrix, and different dosages (1%, 2%, 3%, mass fraction) was mixed with nano-ZnO, nano-SiO2 and nano-TiO2 respectively to prepare modified asphalt, and the effect and mechanism of inorganic nanoparticles on the anti-aging performance of asphalt were explored. The test results show that the aging resistance of asphalt modified by incorporating inorganic nanoparticles is significantly improved. When 2wt% nano-TiO2 is added, the improvement effect of asphalt aging resistance is the best, and the residual penetration after photo-oxidative aging compared with that before modification, it increased by 13.2%, and the softening point increment decreased by 60.7%. The incorporation of inorganic nanoparticles improves the UV light absorption ability of the asphalt and optimizes the internal peak structure, thereby enhancing the viscoelasticity of the modified asphalt and delaying the aging of the asphalt. The test results have guiding significance for the preparation of anti-aging asphalt and long-life asphalt concrete pavement.
Key words:  inorganic nanoparticles    anti-aging property    rheological property    micromorphology
发布日期:  2022-10-26
ZTFLH:  U414  
通讯作者:  *lingtq@163.com   
作者简介:  彭博,2020年6月于重庆交通大学获得工学学士学位。现为重庆交通大学材料科学与工程学院硕士研究生,在凌天清教授的指导下进行研究。目前主要从事新型道路建筑材料的研究。
凌天清,重庆交通大学教授、博士研究生导师,1996年于同济大学获得博士学位,主要从事路基路面设计与维修养护工作。国内核心期刊、国际期刊和国际国内学术会议上公开发表学术论文100余篇。同时,主编面向21世纪交通版教材《道路工程》等2部,参编交通部教材《路基路面工程》等2部,编著出版“十一五国家重点出版工程《边坡与滑坡工程治理》”等级别的学术专著3部。
引用本文:    
彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
PENG Bo, LING Tianqing, GE Hao. Study on Anti-aging Properties of Nanoparticle Modified Rubber Asphalt. Materials Reports, 2022, 36(20): 22090054-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090054  或          http://www.mater-rep.com/CN/Y2022/V36/I20/22090054
1 Yu J K, Feng P C, Zhang H L, et al. Construction & Building Mate-rials, 2009, 23(7), 2636.
2 Zeng W, Wu S, Wen J, et al. Construction & Building Materials, 2015, 93, 1125.
3 Zhang D, Zhang H, Zhu C,et al. Construction and Building Materials, 2017, 144(30), 3423.
4 Sun P, Han S, Zhang H L, et al. Materials Reports B: Research Papers, 2016, 30(4), 125(in Chinese).
孙培, 韩森, 张洪亮, 等. 材料导报:研究篇, 2016, 30(4), 125.
5 Jin J, Tan Y, Liu R, et al. Journal of Materials in Civil Engineering, 2019, 31 (2), 0401,
6 Xiao X Y, Liu W U, Zhang D K, et al. Polymer Composites. 2018, 39 (6), 1959.
7 Zhang H, Shi C, Han J, et al. Construction and Building Materials, 2013, 40, 1151.
8 Sadeghnejad M, Shafabakhsh G, Ahoor B,et al. Construction and Buil-ding Materials, 2020, 237, 117640.
9 Zhang D M, Huang Z R, Yuan G C, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2021.125808
10 Xu X, Guo H Y, Wang X F, et al. Construction and Building Materials, 2019, 224(2), 779.
11 Shafabakhsh G H, Jafari Ani O. Construction and Building Materials, 2015, 98(4), 692.
12 Zheng D, Qian Z, Li P, et al. Construction and Building Materials, 2019, 199(7), 987.
13 Wang J G, Wu S P, Chen M Z. Journal of Wuhan University of Technology, 2009, 31(4), 144(in Chinese).
王金刚, 吴少鹏, 陈美祝. 武汉理工大学学报, 2009, 31(4), 144.
14 Cheng P F,Yang Z H,Zhang Z M, et al. Materials Reports,2022,36(9),114(in Chinese).
程培峰, 杨宗昊, 张展铭,等.材料导报, 2022, 36(9),114.
15 Ye S, Bing Z, Zhao J, et al. Journal of Colloid & Interface Science, 2004, 272(2),326.
16 Zhou M M, Jiang Y, Xie Y H, et al. Journal of Composite Materials, 2022, 39(5), 2089(in Chinese).
周毛毛, 蒋阳, 谢于辉,等. 复合材料学报, 2022, 39(5), 2089.
17 Li F P, Yan E H. Road engineering asphalt and asphalt mixture test regulations, People’s Communications Press, China, 2011, pp.20.
李福普,严二虎.公路工程沥青及沥青混合料试验规程, 人民交通出版社,2011,pp.20.
18 Ge H. Preparation and anti-aging properties of inorganic nanoparticle/rubber powder compound modified bitumen. Master’s Thesis, Chongqing Jiaotong University, China, 2021(in Chinese).
葛豪.无机纳米粒子/胶粉复配改性沥青制备与抗老化性能研究.硕士学位论文, 重庆交通大学, 2021.
19 Günay T, Ahmedzade P. Construction and Building Materials, 2020, 243, 118208.
20 Hu J, Wu S, Liu Q, et al. Construction and Building Materials, 2018, 159, 479.
21 Li Y, Wu S, Liu Q, et al. Construction and Building Materials, 2019, 220(6), 734.
22 Li Y, Wu S, Liu Q, et al. Polymer Testing, 2019, 75(5), 652.
23 Yang J, Wang X, Gong M, et al. Acta Petroleum Sinica (Petroleum Processing), 2015, 31(5), 1110(in Chinese).
杨军, 王潇婷, 龚明辉, 等.石油学报(石油加工), 2015, 31(5), 1110.
24 Wang M, Liu L, Luo D. China Journal of Highway and Transport,2017,30(1), 10(in Chinese).
王明, 刘黎萍, 罗东. 中国公路学报, 2017, 30(1), 10.
[1] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[2] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[3] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[4] 王顺平, 李春燕, 李金玲, 王海博, 寇生中. 块体非晶合金的低温性能研究进展[J]. 材料导报, 2022, 36(13): 20100255-8.
[5] 索智, 陈欢, 张奥, 聂磊. 废植物油再生沥青紫外老化机理及路用性能[J]. 材料导报, 2021, 35(Z1): 662-668.
[6] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[7] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[8] 王健, 杜国正, 张永, 武政, 高靖, 苏力德. 运行状态下风力机叶片涂层沙蚀磨损研究[J]. 材料导报, 2021, 35(4): 4177-4180.
[9] 郭乃胜, 俞春晖, 王淋, 金鑫, 温彦凯. PR.M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087.
[10] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[11] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[12] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[13] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[14] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[15] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed