Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 22070231-9    https://doi.org/10.11896/cldb.22070231
  新型环境功能材料 |
MIL-53(Al)基功能材料的制备及在水处理中的应用
孙雪梓1,2, 王崇臣1,2,*, 李渝航1,2
1 北京建筑大学建筑结构与环境修复功能材料北京市重点实验室,北京 100044
2 北京建筑大学环境与能源工程学院,北京 100044
Fabrication and Water Purification Applications of MIL-53(Al)-based Functional Materials: a Review
SUN Xuezi1,2, WANG Chongchen1,2,*, LI Yuhang1,2
1 Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation,Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
下载:  全 文 ( PDF ) ( 5659KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文综述了MIL-53(Al)、NH2-MIL-53(Al)及其复合物的合成方法、形貌调控及作为荧光传感器、吸附剂和催化剂等在水体污染物传感检测、吸附和催化降解领域的应用的研究进展,系统介绍了利用水/溶剂热法、微波辅助法及室温搅拌法制备MIL-53(Al)、NH2-MIL-53(Al)及其复合物的反应条件、形貌调控及相关方法。MIL-53(Al)和NH2-MIL-53(Al)因在荧光传感检测过程中响应时间快、灵敏度高等特点,被广泛应用于各种污染物的传感检测。MIL-53(Al)和NH2-MIL-53(Al)因具有独特的“呼吸效应”,且具有较大的表面积、丰富的活性位点等特点而在吸附去除污染物方面具有良好的发展潜力。为进一步扩展其应用范围,引入第二组分与MIL-53(Al)、NH2-MIL-53(Al)复合,可加强MIL-53(Al)基功能材料对水体污染物传感检测、吸附和催化的性能。总之,MIL-53(Al)和NH2-MIL-53(Al)作为环境友好型环境功能材料将在水污染控制和修复领域展现出巨大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙雪梓
王崇臣
李渝航
关键词:  MIL-53(Al)  水处理  传感  吸附  高级氧化  污染物    
Abstract: This paper reviews the fabrication strategies, morphology regulations and application (fluorescence sensors, adsorbents and photocatalysts for detecting and eliminating pollutants from water) of MIL-53(Al), NH2-MIL-53(Al) and their composites. The fabrication approaches like hydro/solvothermal methods, microwave-assisted synthesis and homogeneous phase direct synthesis along with the reaction conditions are introduced. MIL-53(Al) and NH2-MIL-53(Al) show excellent performance in detecting pollutants in water, with the characteristics of fast response time and high sensitivity. MIL-53(Al) and NH2-MIL-53(Al) can achieve adsorptive removal toward pollutants in water due to their ‘respiratory effect’, large surface area and rich active sites. The performance of MIL-53(Al) in adsorption, advanced oxidation degradation, sensing detection can be improved by compositing with other functional materials. In a word, MIL-53(Al) and NH2-MIL-53(Al), as environment-friendly environmental functional materials, show great application potential in water purification field.
Key words:  MIL-53(Al)    water purification    sensing    adsorption    advanced oxidation    pollutant
发布日期:  2022-10-26
ZTFLH:  X523  
基金资助: 国家自然科学基金(51878023);北京自然科学基金(8202016);北京市属高等学校长城学者培养计划 (CIT&TCD20180323);北京市百千万人才工程(2020A27)
通讯作者:  *chongchenwang@126.com   
作者简介:  孙雪梓,2021年6月于河北农业大学获得工学学士学位。现为北京建筑大学环境与能源工程学院研究生,在王崇臣教授的指导下进行研究。目前主要从事金属-有机骨架材料及衍生物/复合物的设计与可控制备及其环境应用研究。
王崇臣,北京建筑大学教授、博士研究生导师。于2000年在中南林学院获得学士学位,于2004年和2012年在北京化工大学获得硕士学位和博士学位。主要研究领域为环境功能材料。以金属-有机骨架(MOFs)材料为主开展水污染控制方面的研究工作。发表代表性论文100余篇,其中多篇ESI高被引论文和热点论文。
引用本文:    
孙雪梓, 王崇臣, 李渝航. MIL-53(Al)基功能材料的制备及在水处理中的应用[J]. 材料导报, 2022, 36(20): 22070231-9.
SUN Xuezi, WANG Chongchen, LI Yuhang. Fabrication and Water Purification Applications of MIL-53(Al)-based Functional Materials: a Review. Materials Reports, 2022, 36(20): 22070231-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070231  或          http://www.mater-rep.com/CN/Y2022/V36/I20/22070231
1 Ma S Q, Sun D F, Simmons J M, et al. Journal of the American Chemical Society 2008, 130(3), 1012.
2 Li Y H, Wang C C, Zeng X, et al. Chemical Engineering Journal 2022, 442, 136276.
3 Jiang D N, Chen M, Wang H, et al. Coordination Chemistry Reviews, 2019, 380, 471.
4 Wang C Y, Wang C C, Zhang X W, et al. Chinese Chemical Letters, 2022, 33(3), 1353.
5 Xu X Y, Ji D Q, Zhang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(23), 20734.
6 Zhao C, Li Y, Chu H Y, et al. Journal of Hazardous Materials, 2021, 419, 126466.
7 Yi X H, Ji H D, Wang C C, et al. Applied Catalysis B: Environmental, 2021, 293, 120229.
8 Saifutdinov B R, Isaeva V, Alexandrov E V, et al. Russian Chemical Bulletin, 2015, 64(5), 1039.
9 Gaudin C, Cunha D, Ivanoff E, et al. Microporous and Mesoporous Materials, 2012, 157, 124.
10 Liu J, Zhang F, Zou X Q, et al. Chemical Communications, 2013, 49(67), 7430.
11 Qian X K, Yadian B, Wu R B, et al. International Journal of Hydrogen Energy, 2013, 38(36), 16710.
12 Loiseau T, Serre C, Huguenard C, et al. Chemistry-A European Journal, 2004, 10(6), 1373.
13 Ren X Y, Wang C C, Li Y, et al. Chemical Engineering Journal, 2022, 442, 136306.
14 Wu T R, Prasetya N, Li K, et al. Journal of Membrane Science, 2020, 615, 118493.
15 Janiak C, Vieth J. New Journal of Chemistry, 2010, 34(11), 2366.
16 Huang J Z, Zhong S F, Dai Y F, et al. Environmental Science & Techno-logy, 2018, 52(19), 11309.
17 Chen D D, Yi X H, Ling L, et al. Applied Organometallic Chemistry, 2020, 34(9), e5795.
18 Li C, Xiong Z H, Zhang J M, et al. Journal of Chemical & Engineering Data, 2015, 60(11), 3414.
19 Mao H, Li S H, Zhang A S, et al. Separation and Purification Technology, 2021, 272, 118813.
20 Isaeva V I, Chernyshev V V, Tarasov A L, et al. Russian Journal of Physical Chemistry A, 2018, 92(12), 2386.
21 Meshram A A, Sontakke S M. Separation and Purification Technology, 2021, 274, 119073.
22 Warfsmann J, Tokay B, Champness N R. CrystEngComm, 2018, 20(32), 4666.
23 Huang L, Yang Z H, Alhassan S I, et al. Environmental Science and Ecotechnology, 2021, 8, 100123.
24 Cheng X Q, Zhang A F, Hou K K, et al. Dalton Transactions, 2013, 42(37), 13698.
25 Li Z H, Wu Y N, Li J, et al. Chemistry-A European Journal, 2015, 21(18), 6913.
26 Hou S L, Lu H G, Gu Y F, et al. Chinese Journal of Materials Research, 2017, 31(7), 495.
27 Hou S L, Lu H G, Gu Y F, et al. Journal of Materials Research, 2017, 31(7), 495(in Chinese).
侯书亮, 卢慧宫, 顾逸凡, 等. 材料研究学报, 2017, 31(7), 495.
28 Zhao H N, Xing Z P, Su S Y, et al. Applied Catalysis B: Environmental, 2021, 291, 120106.
29 Liu J M, Liu T, Wang C C, et al. Journal of Molecular Liquids, 2017, 242, 531.
30 Chakraborty A, Acharya H. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126830.
31 Kavak S, Durak Ö, Kulak H, et al. Frontiers in Chemistry,2021,8,1277.
32 Ren Y, Shi M Q,Yin Y, et al. Chinese Journal of Environmental Science, 2019, 39 (8), 2508(in Chinese).
任逸, 施梦琦, 尹越,等. 环境科学学报, 2019, 39(8), 2508.
33 Feng C, Liang K.In: Proceedings of the 14th National Applied Chemistry Conference (I). Shanghai, 2015, pp.201620(in Chinese).
冯超, 梁凯. 2015 年第十四届全国应用化学年会论文集 (上). 上海, 2015, pp.201620.
34 Sahay R, Kumar P S, Sridhar R, et al. Journal of Materials Chemistry, 2012, 22(26), 12953.
35 Dao X Y, Ni Y H, Pan H. Sensors and Actuators B: Chemical, 2018, 271, 33.
36 Zhang L, Wang J, Du T, et al. Inorganic Chemistry, 2019, 58(19), 12573.
37 Yang C X, Ren H B, Yan X P. Analytical Chemistry, 2013, 85(15), 7441.
38 Xie D H, Ge X, Qin W X, et al. Chinese Journal of Chemical Physics, 2021, 34(2), 227.
39 Lu T, Song H J, Dong X Q, et al. Journal of Materials Chemistry C, 2017, 5(36), 9465.
40 Xu S, Ni Y H. Analyst, 2019, 144(5), 1687.
41 Huang L, Yang Z H, Li X R, et al. Environmental Science and Pollution Research, 2021, 28(6), 6886.
42 He J Y, Cai X G, Chen K, et al. Journal of Colloid and Interface Science, 2016, 484, 162.
43 Ma X D, Wu X H, Shen P K. ACS Applied Energy Materials, 2018, 1(11), 6268.
44 Han Y T, Liu M, Li K Y, et al. Inorganic Chemistry Frontiers, 2017, 4(11), 1870.
45 Bai Z Y, Hu C Z, Liu H J, et al. Journal of Colloid and Interface Science, 2019, 539, 146.
46 Cho D W, Han Y S, Lee J H, et al. Chemosphere, 2020, 247, 125899.
47 Arcibar-Orozco J A, Flores-Rojas A I, Rangel-Mendez J R, et al. Environmental technology, 2018, 41, 1254.
48 Kang D J, Yu X L, Ge M Y, et al. Chemical Engineering Journal, 2018, 345, 252.
49 Ahmed F, Ghosh S R, Halder S, et al. New Journal of Chemistry, 2019, 43(6), 2710.
50 Yang J, Dai Y, Zhu X Y, et al. Journal of Materials Chemistry A, 2015, 3(14), 7445.
51 Dou R N, Zhang J Y, Chen Y C, et al. Environmental Science and Pollution Research, 2017, 24(9), 8778.
52 Zhou M M, Wu Y N, Qiao J L, et al. Journal of Colloid and Interface Science, 2013, 405, 157.
53 Patil D V, Rallapalli P, Dangi G P, et al. Industrial & Engineering Chemistry Research, 2011, 50(18), 10516.
54 Al Sharabati M O Y, Sabouni R. Polyhedron, 2020, 190, 114762.
55 Ma X Y, Tan J Y, Li Z Q, et al. Langmuir, 2022, 38(3), 1158.
56 Katugampalage T R, Ratanatawanate C, Opaprakasit P, et al. Chemical Engineering Journal Advances, 2021, 8, 100160.
57 Xiao Y L, Han T T, Xiao G, et al. Langmuir, 2014, 30(41), 12229.
58 Isiyaka H A, Jumbri K, Sambudi N S, et al. Environmental Nanotechno-logy, Monitoring & Management, 2022, 18, 100663.
59 Gao Y X, Kang R X, Xia J,et al. Journal of Colloid and Interface Science, 2019, 535, 159.
60 Imanipoor J, Mohammadi M D, Dinari M, et al. Journal of Chemical & Engineering Data, 2020, 66(1), 389.
61 Li J, Wu Y N, Li Z H, et al. Water Science and Technology, 2014, 70(8), 1391.
62 Guan Y B, Xia M, Wang X H, et al. Inorganica Chimica Acta, 2019, 484, 180.
63 Abdelhameed R M, Taha M, Abdel-Gawad H, et al. Journal of Molecular Liquids, 2021, 327, 114852.
64 Chen J, Xu Y L, Li S Y, et al. RSC Advances, 2021, 11(4), 2397.
65 Khodayari A, Sohrabnezhad S. Journal of Solid State Chemistry, 2021, 297, 122087.
66 Quan X P, Sun Z Q, Xu J L, et al. Inorganic Chemistry, 2020, 59(5), 2667.
67 Heidari A A, Mahdavi H, Karami M. Iranian Journal of Polymer Science and Technology, 2021, 34(4), 387.
68 Mahdavi H, Karami M, Heidari A A, et al. Separation and Purification Technology, 2021, 274, 119033.
69 Chatterjee A, Jana A K, Basu J K. New Journal of Chemistry, 2020, 44(43), 18892.
70 Lu Z H, Senosy I A, Zhou D D, et al. Separation and Purification Technology, 2021, 276, 119282.
71 Sun Y, Li D W, Wei Q F. Journal of Materials Research, 2020, 34(5), 353(in Chinese).
孙玥, 李大伟, 魏取福. 材料研究学报 2020, 34(5), 353.
72 Li G, Zhao H F, Guo P T, et al. Journal of Solid State Chemistry, 2022, 310, 123066.
73 Wu T R, Prasetya N, Li K. Journal of Environmental Chemical Enginee-ring, 2022, 10(3), 107432.
74 Cheng X Q, Liu M, Zhang A F, et al. Nanoscale, 2015, 7(21), 9738.
75 Tian N, Dai Y F, Liu Q, et al. Polyhedron, 2019, 166, 109.
76 Chowdhury T, Zhang L, Zhang J Q, et al. Nanomaterials, 2018, 8(12), 1062.
77 Huang S Y, Pang H W, Li L, et al. Chemical Engineering Journal, 2018, 353, 157.
78 Jia Y, Chen Y, Luo J, et al. Ecotoxicology and Environmental Safety, 2019, 184, 109670.
79 Tan H Y, Meng Z, Feng H L, et al. Journal of Huazhong Agricultural University, 2020, 39(3), 68(in Chinese).
谭海燕, 孟泽, 冯翰林,等. 华中农业大学学报, 2020, 39(3), 68.
80 Liu F, Cao J, Yang Z, et al. Journal of Colloid and Interface Science, 2021, 581, 195.
81 Samy M, Ibrahim M G, Alalm M G, et al. Separation and Purification Technology, 2020, 249, 117173.
82 Xiao H, Zhang W Y, Yao Q S, et al. Applied Catalysis B: Environmental, 2019, 244, 719.
83 Wei Q M, Li W, Jin C, et al. Journal of Rare Earths, 2022, 40(4), 595.
84 Zokaee Z, Mahmoodi N M, Rahimpour M R, et al. Journal of Solid State Chemistry, 2022, 307, 122747.
85 Meshram A A, Sontakke S M. Advanced Powder Technology, 2021, 32(8), 3125.
86 Yang Y F, Wang W J, Li H, et al. Materials Letters, 2017, 197, 17.
87 An Y, Li H L, Liu Y Y, et al. Journal of Solid State Chemistry, 2016, 233, 194.
88 Ma Y, Chi B, Liu W, et al. ACS Catalysis, 2019, 9(9), 8404.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[3] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[4] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[5] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[6] 肖萍萍, 张国军, 孙忠月. 仿生固态纳米孔在生物传感中的应用进展[J]. 材料导报, 2022, 36(8): 20080071-11.
[7] 张航, 马蓉, 弓亮, 黄丽丽, 陈南春, 解庆林, 马丽丽. 硅藻基Cr(VI)表面离子印迹吸附材料的制备及其对Cr(VI)的吸附性能[J]. 材料导报, 2022, 36(8): 21010050-7.
[8] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[9] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[10] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[11] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[12] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[13] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[14] 杨秀烨, 方金祥, 何鹏. 自动焊接传感技术研究现状及发展趋势[J]. 材料导报, 2022, 36(3): 20090224-8.
[15] 吴江松, 谭彦妮, 刘晏军. 羟基磷灰石在传感领域应用的研究进展[J]. 材料导报, 2022, 36(20): 20090296-13.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed