Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22070156-7    https://doi.org/10.11896/cldb.22070156
  金属与金属基复合材料 |
外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究
王丽红, 满蛟*, 姜一鸣, 刘庚根, 周建平
新疆大学机械工程学院,乌鲁木齐 830000
Phase Field Study of the Effect of External Loading on the Transformation- Reverse Transformation of Thermoelastic Martensite
WANG Lihong, MAN Jiao*, JIANG Yiming, LIU Genggen, ZHOU Jianping
School of Mechanical Engineering, Xinjiang University, Urumqi 830000, China
下载:  全 文 ( PDF ) ( 6986KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作建立了一种新的马氏体逆相变的相场模型,以Cu-Al-Ni合金为例,研究了热弹性马氏体正相变和逆相变的演化规律,揭示了热弹性马氏体的形状记忆效应。同时模拟了拉伸释放弹性应变能这种机制对热弹性马氏体相变和热弹性马氏体逆相变的作用,研究了外加载荷对马氏体逆相变温度As的影响。模拟结果表明:应变能是形状记忆合金马氏体相变的阻力,是其逆相变的驱动力。在马氏体正相变过程中,拉伸载荷释放了应变能,降低了相变阻力,从而对马氏体相变起促进作用;在马氏体的逆相变过程中,由于拉伸载荷降低了马氏体所储存的应变能,因而降低了逆相变过程的驱动力,使合金逆相变As温度升高,进而提高了热弹性马氏体的低温稳定性。模拟结果与实验结果相一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丽红
满蛟
姜一鸣
刘庚根
周建平
关键词:  相场模拟  弹性应变能  Cu-Al-Ni合金  马氏体逆相变  逆相变起始温度    
Abstract: A new phase field model of reverse martensitic transformation was established in this study. Taking Cu-Al-Ni alloy as an example, the evolution law of thermoelastic martensitic transformation and reverse martensitic transformation was studied, and the shape memory effect of thermoelastic martensitic was revealed. The effect of the mechanism of tensile release of elastic strain energy on the thermoelastic martensitic transformation and thermoelastic reverse martensitic transformation was simulated, and the effect of applied load on the temperature As of reverse martensitic phase transformation was investigated. The simulation results show that the strain energy is the resistance to the martensitic transformation of the shape memory alloy and the driving force for reverse martensitic transformation. In the process of martensitic transformation, the tensile load releases the strain energy and reduces the resistance to martensitic transformation, thus promoting the martensitic transformation. In the process of reverse martensitic transformation, since the tensile load reduces the strain energy stored in the martensitic transformation, it reduces the driving force of the reverse martensitic transformation process and increases the alloy reverse martensitic transformation temperature As, which in turn increases the stability of thermoelastic martensite at low temperatures. The simulation results are consistent with the experimental results.
Key words:  phase field simulation    elastic strain energy    Cu-Al-Ni alloy    reverse martensitic transformation    the starting temperature of reverse martensitic transformation
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TG146  
基金资助: 新疆维吾尔自治区高层次人才天池计划(100400028);新疆大学博士启动基金(620320011)
通讯作者:  *满蛟,新疆大学机械工程学院副教授、硕士研究生导师,2000年哈尔滨工业大学管理会计学专业本科毕业,2006年新疆大学材料加工专业硕士毕业,2010年上海交通大学材料物理与化学专业博士毕业。主要研究方向为相场理论、材料多尺度计算、金属增材制造领域理论及工艺研发。目前发表论文10余篇,代表作刊发在Applied Physics Letters、Metallurgical and Materials Transactions A、《金属学报》等国内外著名杂志。manjiao@xju.edu.cn   
作者简介:  王丽红,2020年于太原工业学院获得工学学士学位。现为新疆大学机械工程学院硕士研究生,在满蛟副教授的指导下进行研究。目前主要研究领域为相场模拟。
引用本文:    
王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
WANG Lihong, MAN Jiao, JIANG Yiming, LIU Genggen, ZHOU Jianping. Phase Field Study of the Effect of External Loading on the Transformation- Reverse Transformation of Thermoelastic Martensite. Materials Reports, 2024, 38(8): 22070156-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070156  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22070156
1 Li Z M, Li X N, Hu Y L, et al. Acta Materialia, 2021, 203, 116.
2 Adnan R, Abbass M K, Jomaa D M, et al. Materials Today:Procee-dings, 2021, 42, 2119.
3 Rodríguez A J, Ruiz L I, Nó M L, et al. Acta Materialia, 2008, 56, 3711.
4 Nó M L, Caillard D, San J J. Acta Materialia, 2009, 57, 1004.
5 Dutkiewicz J, Czeppe T, Morgiel J, Materials Science and Engineering, 1999, 273, 703.
6 Mackenzie J K, Bowles J S. Acta Metallurgica, 1954, 2, 138.
7 Xu Z Y. Martensitic transformation and martensite, Beijing Science Press, China, 1999. pp. 14(in Chinese).
徐祖耀. 马氏体相变与马氏体, 北京科学出版社, 1999. pp. 14.
8 Mazzer E M, Kiminami C S, Bolfarini C, et al. Thermochimica Acta, 2015, 608, 1.
9 Recarte V, Pérez J I, Rodríguez P P, et al. Acta Materialia, 2004, 52, 3941.
10 Lu N, Wang Y X, Chen Z. Materials Reports, 2014, 28(17), 73(in Chinese).
鲁娜, 王永欣, 陈铮. 材料导报, 2014, 28(17), 73.
11 Militzer M, Pandi R, Hawbolt E B. Metallurgical and Materials Transactions A, 1996, 27, 1547.
12 Weyg D. Philosophical Magazine B, 1998, 78, 329.
13 Marthinsen K, Hunderi O, Ryum N. In:Chen L Q, Fultz B, Cahn J W, et al. ed. Mathematics of Microstructural Evolution. Warrendale, PA:The Minerals, Metals & Materials Society, 1996. pp. 1522.
14 Qin R, Bhadeshia H. Materials science and Technology, 2010, 26, 803.
15 Iii C, Chen L Q. Acta Materialia, 2002, 50, 3059.
16 Li Y S, Chen Z, Wang Y X, et al. Materials Reports, 2004(8), 1(in Chinese).
李永胜, 陈铮, 王永欣, 等. 材料导报, 2004(8), 1.
17 Chen W P, Zhao Y H, Zhang B, et al. Materials Reports, 2018, 32(S2), 535.(in Chinese)
陈伟鹏, 赵宇宏, 张冰, 等. 材料导报, 2018, 32(S2), 535.
18 Li X, Su Y. Acta Mechanica, 2020, 23, 17.
19 Piao M, Otsuka K, Miyazaki S, et al. Materials Transactions Jim, 1993, 34, 919.
20 Yeddu H K, Razumovskiy V I, Borgenstam A, et al. Acta Materialia, 2012, 60, 6508.
21 Wang Y, Khachaturyan A G. Acta Materialia, 1997, 45, 759.
22 Mamivand M, Zaeem M A, Kadiri H E, et al. Acta Materialia, 2013, 61, 5223.
23 Newnham R. Materials Research Bulletin, 1984, 19, 125.
24 Li D Y, Chen L Q. Acta Materialia, 1998, 46, 639.
25 Artemev A, Wang Y, Khachaturyan A G. Acta Materialia, 2000, 48, 2503.
26 Gautier E, Denis S, Liebaut C, et al. Journal de Physique IV, 1994, 4, 137.
27 Man J, Zhang J H, Rong Y H. Acta Metallurgica Sinica, 2010, 46(7), 6.(in Chinese)
满蛟, 张骥华, 戎咏华. 金属学报, 2010, 46(7), 6.
28 Ostapovets A, Zarubova N, Paidar V. Acta Physica Polonica A, 2012, 122, 493.
29 Zhang W, Jin Y M, Khachaturyan A G. Philosophical Magazine, 2007, 87, 1545.
30 Picornell C, Pons J, Cesari E. Acta Materialia, 2001, 49, 4221.
31 Lqc A, Jie S B. Computer Physics Communications, 1998, 108, 147.
32 López F I, Gómez J F, Breczewski T, et al. Journal of Materials Research and Technology, 2020, 9, 9972.
33 Delaey L, Chandrasekaran M. Scripta Metallurgica Et Materialia, 1994, 30, 1605.
34 Warlimont H, Delaey L. Progress in Materials Science, 1974, 18, 113.
35 Olson G B, Cohen M. Journal of the Less Common Metals, 1972, 28, 107.
36 Man J, Zhang J H, Rong Y H. Applied Physics Letters, 2010, 96, 2163.
37 Xu Z Y. Journal of Shanghai Jiaotong University, 1996(3), 8(in Chinese).
徐祖耀. 上海交通大学学报, 1996(3), 8.
[1] 杨玉芳, 胡晋龙, 刘永博, 王明涛. Fe-3%Si合金薄带连铸板热处理过程层状异构组织演变的相场模拟研究[J]. 材料导报, 2024, 38(11): 22110098-7.
[2] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[3] 罗磊, 李向明, 魏岑, 王献. 基于相场模拟的倾斜共晶生长研究进展[J]. 材料导报, 2020, 34(11): 11114-11120.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed