Abstract: A new phase field model of reverse martensitic transformation was established in this study. Taking Cu-Al-Ni alloy as an example, the evolution law of thermoelastic martensitic transformation and reverse martensitic transformation was studied, and the shape memory effect of thermoelastic martensitic was revealed. The effect of the mechanism of tensile release of elastic strain energy on the thermoelastic martensitic transformation and thermoelastic reverse martensitic transformation was simulated, and the effect of applied load on the temperature As of reverse martensitic phase transformation was investigated. The simulation results show that the strain energy is the resistance to the martensitic transformation of the shape memory alloy and the driving force for reverse martensitic transformation. In the process of martensitic transformation, the tensile load releases the strain energy and reduces the resistance to martensitic transformation, thus promoting the martensitic transformation. In the process of reverse martensitic transformation, since the tensile load reduces the strain energy stored in the martensitic transformation, it reduces the driving force of the reverse martensitic transformation process and increases the alloy reverse martensitic transformation temperature As, which in turn increases the stability of thermoelastic martensite at low temperatures. The simulation results are consistent with the experimental results.
王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
WANG Lihong, MAN Jiao, JIANG Yiming, LIU Genggen, ZHOU Jianping. Phase Field Study of the Effect of External Loading on the Transformation- Reverse Transformation of Thermoelastic Martensite. Materials Reports, 2024, 38(8): 22070156-7.
1 Li Z M, Li X N, Hu Y L, et al. Acta Materialia, 2021, 203, 116. 2 Adnan R, Abbass M K, Jomaa D M, et al. Materials Today:Procee-dings, 2021, 42, 2119. 3 Rodríguez A J, Ruiz L I, Nó M L, et al. Acta Materialia, 2008, 56, 3711. 4 Nó M L, Caillard D, San J J. Acta Materialia, 2009, 57, 1004. 5 Dutkiewicz J, Czeppe T, Morgiel J, Materials Science and Engineering, 1999, 273, 703. 6 Mackenzie J K, Bowles J S. Acta Metallurgica, 1954, 2, 138. 7 Xu Z Y. Martensitic transformation and martensite, Beijing Science Press, China, 1999. pp. 14(in Chinese). 徐祖耀. 马氏体相变与马氏体, 北京科学出版社, 1999. pp. 14. 8 Mazzer E M, Kiminami C S, Bolfarini C, et al. Thermochimica Acta, 2015, 608, 1. 9 Recarte V, Pérez J I, Rodríguez P P, et al. Acta Materialia, 2004, 52, 3941. 10 Lu N, Wang Y X, Chen Z. Materials Reports, 2014, 28(17), 73(in Chinese). 鲁娜, 王永欣, 陈铮. 材料导报, 2014, 28(17), 73. 11 Militzer M, Pandi R, Hawbolt E B. Metallurgical and Materials Transactions A, 1996, 27, 1547. 12 Weyg D. Philosophical Magazine B, 1998, 78, 329. 13 Marthinsen K, Hunderi O, Ryum N. In:Chen L Q, Fultz B, Cahn J W, et al. ed. Mathematics of Microstructural Evolution. Warrendale, PA:The Minerals, Metals & Materials Society, 1996. pp. 1522. 14 Qin R, Bhadeshia H. Materials science and Technology, 2010, 26, 803. 15 Iii C, Chen L Q. Acta Materialia, 2002, 50, 3059. 16 Li Y S, Chen Z, Wang Y X, et al. Materials Reports, 2004(8), 1(in Chinese). 李永胜, 陈铮, 王永欣, 等. 材料导报, 2004(8), 1. 17 Chen W P, Zhao Y H, Zhang B, et al. Materials Reports, 2018, 32(S2), 535.(in Chinese) 陈伟鹏, 赵宇宏, 张冰, 等. 材料导报, 2018, 32(S2), 535. 18 Li X, Su Y. Acta Mechanica, 2020, 23, 17. 19 Piao M, Otsuka K, Miyazaki S, et al. Materials Transactions Jim, 1993, 34, 919. 20 Yeddu H K, Razumovskiy V I, Borgenstam A, et al. Acta Materialia, 2012, 60, 6508. 21 Wang Y, Khachaturyan A G. Acta Materialia, 1997, 45, 759. 22 Mamivand M, Zaeem M A, Kadiri H E, et al. Acta Materialia, 2013, 61, 5223. 23 Newnham R. Materials Research Bulletin, 1984, 19, 125. 24 Li D Y, Chen L Q. Acta Materialia, 1998, 46, 639. 25 Artemev A, Wang Y, Khachaturyan A G. Acta Materialia, 2000, 48, 2503. 26 Gautier E, Denis S, Liebaut C, et al. Journal de Physique IV, 1994, 4, 137. 27 Man J, Zhang J H, Rong Y H. Acta Metallurgica Sinica, 2010, 46(7), 6.(in Chinese) 满蛟, 张骥华, 戎咏华. 金属学报, 2010, 46(7), 6. 28 Ostapovets A, Zarubova N, Paidar V. Acta Physica Polonica A, 2012, 122, 493. 29 Zhang W, Jin Y M, Khachaturyan A G. Philosophical Magazine, 2007, 87, 1545. 30 Picornell C, Pons J, Cesari E. Acta Materialia, 2001, 49, 4221. 31 Lqc A, Jie S B. Computer Physics Communications, 1998, 108, 147. 32 López F I, Gómez J F, Breczewski T, et al. Journal of Materials Research and Technology, 2020, 9, 9972. 33 Delaey L, Chandrasekaran M. Scripta Metallurgica Et Materialia, 1994, 30, 1605. 34 Warlimont H, Delaey L. Progress in Materials Science, 1974, 18, 113. 35 Olson G B, Cohen M. Journal of the Less Common Metals, 1972, 28, 107. 36 Man J, Zhang J H, Rong Y H. Applied Physics Letters, 2010, 96, 2163. 37 Xu Z Y. Journal of Shanghai Jiaotong University, 1996(3), 8(in Chinese). 徐祖耀. 上海交通大学学报, 1996(3), 8.