Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22120172-11    https://doi.org/10.11896/cldb.22120172
  无机非金属及其复合材料 |
全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展
梁梦标1, 陈婷1,*, 秦喆1, 谢志翔1, 徐彦乔2, 温鹏1, 林坚1, 郭春显1
1 苏州科技大学材料科学与工程学院,江苏 苏州 215009
2 景德镇陶瓷大学材料科学与工程学院,江苏 景德镇 333001
Surface Coating Strategy and White LED Applications Progress of All-inorganic Cesium Lead Halide Perovskites Nanocrystals
LIANG Mengbiao1, CHEN Ting1,*, QIN Zhe1, XIE Zhixiang1, XU Yanqiao2, WEN Peng1, LIN Jian1, GUO Chunxian1
1 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangsu, China
下载:  全 文 ( PDF ) ( 42946KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全无机铯铅卤钙钛矿纳米晶CsPbX3(X=Cl、Br、I)具有量子产率高、载流子寿命长、带隙窄、光谱可调范围广等优异的光电性能,在发光二极管(LED)、太阳能电池、光电探测等领域有着广阔的应用前景。然而,由于离子化合物的本征特性,其在水分、光照以及温度的作用下不能稳定存在,严重阻碍了该纳米晶在光电领域的应用。近年来,科研工作者相继报道了各种提高钙钛矿纳米晶稳定性的方法,如离子掺杂、表面钝化和表面包覆等策略。与离子掺杂和表面钝化相比,表面包覆策略不仅隔离了环境因素对CsPbX3纳米晶的影响,还阻止了不同阴离子组分的钙钛矿纳米晶间的阴离子交换,提高了纳米晶的稳定性。因此,本文详细介绍了全无机铯铅卤钙钛矿纳米晶的包覆机理,同时重点从聚合物薄膜、氧化物、金属有机框架和沸石等包覆材料层面介绍表面包覆策略的优越性,最后总结了复合材料在照明和显示领域的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁梦标
陈婷
秦喆
谢志翔
徐彦乔
温鹏
林坚
郭春显
关键词:  全无机铯铅卤钙钛矿纳米晶  稳定性  表面包覆  荧光    
Abstract: All-inorganic cesium lead halide perovskite nanocrystals CsPbX3 (X=Cl,Br,I) exhibit excellent photoelectric properties, such as high photoluminescence quantum yield, long carrier lifetime, narrow emission line width, and adjustable band gap. They show great application prospects in the fields of light-emitting diodes (LED), solar cells, photoelectric detection, etc. However, perovskite nanocrystals present poor stability under the conditions of water, light and temperature due to the inherent ionic features, which seriously hinders the application of nanocrystals in the field of optoelectronics. In recent years, researchers have reported various methods to improve the stability of perovskite nanocrystals, including ion doping, surface passivation and surface coating. Compared with ion doping and surface passivation, the surface coating strategy not only isolates the CsPbX3 nanocrystals from the environment, but also avoids their anion exchange from different anionic components of perovskite nanocrystals, and thus significantly improves the stability of nanocrystals. Therefore, we introduce the coating mechanism of all inorganic cesium lead halide perovskite nanocrystals in detail, and focus on the advantages of this strategy from the aspects of polymer films, oxides, metal orga-nic frameworks, zeolite and other coating materials. Finally, the applications of coating materials in lighting and display are summarized.
Key words:  all-inorganic cesium lead halide perovskite nanocrystals    stability    surface coating    fluorescence
发布日期:  2024-06-25
ZTFLH:  O471.1  
  TB383  
基金资助: 国家自然科学基金(52062019;22001187);江苏省高校青蓝工程
通讯作者:  *陈婷,苏州科技大学副教授、硕士研究生导师。2005年云南大学材料物理专业本科毕业,2008年云南大学材料学专业硕士毕业,2012年北京科技大学材料学专业博士毕业。2020年到苏州科技大学工作至今。目前主要从事荧光量子点方面的研究工作。以第一作者和通信作者身份在国内外高质量期刊上发表70篇原创高水平科研论文。chenting@mail.usts.edu.cn   
作者简介:  梁梦标,2018年毕业于江苏科技大学,获得工学学士学位。现为苏州科技大学材料科学与工程学院硕士,在陈婷副教授的指导下进行研究。目前主要研究领域为全无机铯铅卤钙钛矿纳米晶。
引用本文:    
梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
LIANG Mengbiao, CHEN Ting, QIN Zhe, XIE Zhixiang, XU Yanqiao, WEN Peng, LIN Jian, GUO Chunxian. Surface Coating Strategy and White LED Applications Progress of All-inorganic Cesium Lead Halide Perovskites Nanocrystals. Materials Reports, 2024, 38(11): 22120172-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120172  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22120172
1 Lee M M, Teuscher J, Miyasaka T, et al. Science, 2012, 338(6107), 643.
2 Bercegol A, Ory D, Suchet D, et al. Nature Communications, 2019, 10(1), 1.
3 Islam N U, Usman M, Rasheed S, et al. ECS Journal of Solid State Science and Technology, 2021, 10, 106004.
4 An K, Kim C, Kim S, et al. Small, 2023, 19(20), 2206133.
5 Wei H, Huang J. Nature Communications, 2019, 10(1), 1.
6 Xiao H, Fu J, Wei X, et al. Laser & Photonics Reviews, 2022, 16(11), 2200276.
7 He Q, Zhou C, Xu L, et al. ACS Materials Letters, 2020, 2(6), 633.
8 O'Neill J, Braddock I, Crean C, et al. Frontiers in Physics, 2023, 10, 1400.
9 Lv W, Li L, Xu M, et al. Advanced Materials, 2019, 31(28), 1900682.
10 Yin L, Wu H, Pan W, et al. Advanced Optical Materials, 2019, 7(19), 1900491.
11 Lu L, Pan X, Luo J, et al. Chemistry-A European Journal, 2020, 26(71), 16975.
12 Yuan F, Zheng X, Johnston A, et al. Science Advances, 2020, 6(42), eabb0253.
13 Akkerman Q A, Rainò G, Kovalenko M V, et al. Nature Materials, 2018, 17(5), 394.
14 Qaid S M H, Ghaithan H M, Al-Asbahi B A, et al. Surfaces and Interfaces, 2021, 23, 100948.
15 Li J, Wang B, Liu Z. Journal of Luminescence, 2021, 240, 118413.
16 Erol E, Kıbrıslı O, Ersundu M Ç, et al. Chemical Engineering Journal, 2020, 401, 126053.
17 Liu X K, Xu W, Bai S, et al. Nature Materials, 2021, 20(1), 10.
18 Gong Z, Zhang W, Pan S, et al. Journal of Crystal Growth, 2022, 586, 126604.
19 Wang D, Li W, Du Z, et al. Journal of Materials Chemistry C, 2020, 8(5), 1649.
20 Zou S, Liu Y, Li J, et al. Journal of the American Chemical Society, 2017, 139(33), 11443.
21 Pan J, Huang H, Zhao W, et al. ACS Applied Nano Materials, 2022, 5(10), 15062.
22 Zhong Q, Cao M, Xu Y, et al. Nano Letters, 2019, 19(6), 4151.
23 Yu M, Zhang D, Xu Y, et al. Journal of Colloid and Interface Science, 2022, 608, 2367.
24 Zhang Q, Jiang M, Yan G, et al. Journal of Materials Chemistry C, 2022, 10(15), 5849.
25 Sun C, Wei J, Zhao J, et al. Nanophotonics, 2020, 10(8), 2157.
26 Hu Y, Kareem S, Dong H, et al. ACS Applied Nano Materials, 2021, 4(6), 6306.
27 Bao Z, Chang Y C, Wang H C, et al. Green Chemistry, 2021, 23(22), 8871.
28 Wang B, Peng J, Yang X, et al. Laser & Photonics Reviews, 2022, 16, 2100736.
29 Song J, Li J, Li X, et al. Advanced Materials, 2015, 27(44), 7162.
30 Kang J, Wang L W. The Journal of Physical Chemistry Letters, 2017, 8(2), 489.
31 Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nano Letters, 2015, 15(6), 3692.
32 Liu F, Zhang Y, Ding C, et al. ACS Nano, 2017, 11(10), 10373.
33 Li X, Wu Y, Zhang S, et al. Advanced Functional Materials, 2016, 26(15), 2435.
34 Li J, Xu L, Wang T, et al. Advanced Materials, 2017, 29(5), 1603885.
35 De Roo J, Ibáñez M, Geiregat P, et al. ACS Nano, 2016, 10(2), 2071.
36 Liu Y, Li Y, Hu X, et al. Chemical Engineering Journal, 2023, 453, 139904.
37 Leguy A M A, Hu Y, Campoy-Quiles M, et al. Chemistry of Materials, 2015, 27(9), 3397.
38 Ren J, Dong X, Zhang G, et al. New Journal of Chemistry, 2017, 41(22), 13961.
39 Guan J, Yang D, Ma J, et al. Journal of Materials Chemistry B, 2023, 11, 1705.
40 Chen J, Liu D, Al-Marri M J, et al. Science China Materials, 2016, 59(9), 719.
41 Li J, Liu G, Lu Y, et al. Journal of Materials Chemistry C, 2022, 10, 15843.
42 Shi J, Ge W, Tian Y, et al. Small, 2021, 17(14), 2006568.
43 Chen H, Wang Y, Wang J, et al. Coatings, 2021, 11(8), 953.
44 Shi Z, Li Y, Zhang Y, et al. Nano Letters, 2017, 17(1), 313.
45 Burwig T, Fränzel W, Pistor P. The Journal of Physical Chemistry Letters, 2018, 9(16), 4808.
46 Wei Y, Deng X, Xie Z, et al. Advanced Functional Materials, 2017, 27(39), 1703535.
47 Jiang D H, Tsai Y H, Veeramuthu L, et al. APL Materials, 2019, 7(11), 111105.
48 Chen L, Yuan S, Chen A, et al. Optical Materials, 2022, 127, 112289.
49 Luo F, Zhang Y, Zu Y, et al. Microchimica Acta, 2022, 189(2), 68.
50 Zhang Q, Wang B, Zheng W, et al. Nature Communications, 2020, 11(1), 1.
51 Jiang M C, Lin C Q, Yang Z, et al. Journal of Solid State Chemistry, 2023, 318, 123724.
52 An M N, Park S, Brescia R, et al. ACS Energy Letters, 2021, 6(3), 900.
53 Song S, Wang W, Cao B. Optical Materials, 2022, 133, 113070.
54 Geng Y, Guo J, Wang H, et al. Small, 2022, 18(19), 2200740.
55 Lignos I, Stavrakis S, Nedelcu G, et al. Nano Letters, 2016, 16(3), 1869.
56 Chen Z, Zhao J, Zeng R, et al. Chemical Engineering Journal, 2022, 433, 133195.
57 Mo Q, Chen C, Cai W, et al. Laser & Photonics Reviews, 2021, 15(10), 2100278.
58 Adhikari G C, Thapa S, Zhu H, et al. ACS Applied Electronic Materials, 2019, 2(1), 35.
59 Thapa S, Adhikari G C, Zhu H, et al. Journal of Alloys and Compounds, 2021, 860, 158501.
60 Ji Y, Wang M, Yang Z, et al. The Journal of Physical Chemistry Letters, 2021, 12(15), 3786.
61 Zhang M, Li Y, Du K, et al. Journal of Materials Chemistry C, 2021, 9(4), 1228.
62 Qiu L G, Xu T, Li Z Q, et al. Angewandte Chemie International Edition, 2008, 47(49), 9487.
63 Ren J, Li T, Zhou X, et al. Chemical Engineering Journal, 2019, 358, 30.
64 Chen P, Liu Y, Zhang Z, et al. Nanoscale, 2019, 11, 16499.
65 Bhattacharyya S, Rambabu D, Maji T K. Journal of Materials Chemistry A, 2019, 7(37), 21106.
66 Chen C, Nie L, Huang Y, et al. Nanotechnology, 2022, 33(17), 175603.
67 Sun J Y, Rabouw F T, Yang X F, et al. Advanced Functional Materials, 2017, 27(45), 1704371.
68 Ye S, Sun J Y, Han Y H, et al. ACS Applied Materials & Interfaces, 2018, 10(29), 24656.
69 Wang P, Wang B, Liu Y, et al. Angewandte Chemie International Edition , 2020, 132(51), 23300.
70 Wang W, Guo R, Xiong X, et al. Materials Today Physics, 2021, 18, 100374.
71 Li B, Zhang Y, Xu Y, et al. Journal of Materials Chemistry C, 2021, 9(36), 12118.
72 Zhang Y, Han L, Li B, et al. Chemical Engineering Journal, 2022, 437, 135290.
73 Ren J, Meijerink A, Zhou X, et al. ACS Applied Materials & Interfaces, 2022, 14(2), 3176.
74 Li J S, Tang Y, Li Z T, et al. ACS Nano, 2021, 15(1), 550.
75 Tong Y, Wang Q, Mei E, et al. Advanced Optical Materials, 2021, 9(11), 2100012.
76 Zhang Q, Zheng W, Wan Q, et al. Advanced Optical Materials, 2021, 9(11), 2002130.
77 Hao J, Qu X, Qiu L, et al. Advanced Optical Materials, 2019, 7(4), 1801323.
78 Lin J, Wang S, Chen G, et al. Journal of Materials Chemistry C, 2022, 10(18), 7263.
79 Li H, Eddaoudi M, O'Keeffe M, et al. Nature, 1999, 402(6759), 276.
80 Luzan S M, Talyzin A V. Microporous and Mesoporous Materials, 2010, 135(1-3), 201.
81 Wu H, Wang S, Cao F, et al. Chemistry of Materials, 2019, 31(6), 1936.
82 Zhou Y, Yu Y, Zhang Y, et al. Inorganic Chemistry, 2021, 60(6), 3814.
83 Cao Y, Wang N, Yi C, et al. Acta Optica Sinica, 2022, 42(17), 1733001(in Chinese).
曹雨, 王娜娜, 伊昌, 等. 光学学报, 2022, 42(17), 1733001.
84 Xuan T, Huang J, Liu H, et al. Chemistry of Materials, 2019, 31(3), 1042.
85 Zhang X, Wang H C, Tang A C, et al. Chemistry of Materials, 2016, 28(23), 8493.
86 Hormats E I, Unterleitner F C. The Journal of Physical Chemistry, 1965, 69(11), 3677.
[1] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[2] 何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松. Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能[J]. 材料导报, 2024, 38(8): 22070274-6.
[3] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[4] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[5] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[6] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[7] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[8] 易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
[9] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[10] 孙青月, 余涛, 彭双凤, 孔德昭, 刘畅, 史巧巧, 李雅琪, 陈勇. 荧光生物传感器用于多种真菌毒素同时检测的研究进展[J]. 材料导报, 2024, 38(10): 22090139-11.
[11] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[12] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[13] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[14] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[15] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed