Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22090139-11    https://doi.org/10.11896/cldb.22090139
  无机非金属及其复合材料 |
荧光生物传感器用于多种真菌毒素同时检测的研究进展
孙青月1, 余涛2, 彭双凤2, 孔德昭3, 刘畅3, 史巧巧3, 李雅琪3,4,5,*, 陈勇5,*
1 江苏科技大学生物技术学院,江苏 镇江 212100
2 江苏科技大学环境与化学工程学院,江苏 镇江 212100
3 江苏科技大学粮食学院,江苏 镇江 212100
4 苏州中科先进技术研究院有限公司,江苏 苏州 215123
5 华中科技大学环境科学与工程学院,武汉 430074
State of Research into Fluorescent Biosensors for the Simultaneous Detection of Multiple Mycotoxins
SUN Qingyue1, YU Tao2, PENG Shuangfeng2, KONG Dezhao3, LIU Chang3, SHI Qiaoqiao3, LI Yaqi3,4,5,*, CHEN Yong5,*
1 School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
2 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
3 School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
4 Suzhou Zhongke Advanced Technology Research Institute Co., Ltd., Suzhou 215123, Jiangsu, China
5 School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 22065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 真菌毒素是真菌产生的次级代谢物,常见的主要有黄曲霉毒素、伏马毒素和赭曲霉毒素等多种真菌毒素。食品在储藏、加工或运输中易受真菌毒素侵染,且绝大多数情况下多种真菌毒素同时出现并形成叠加效应产生剧毒,引发食品安全问题,严重危害人类身体健康。因此,对食品中多种真菌毒素的同时检测十分重要。荧光纳米生物传感器具有响应快、检测便捷无干扰、无需参比等优点,在生物分析领域被广泛应用。本文综述了国内外荧光生物传感器检测真菌毒素的研究进展,特别是真菌毒素的多重同时检测,重点介绍荧光生物传感器的类型、组成等方面和以适配体、免疫检测技术为基础的检测方法及其策略,在此基础上,讨论了现有真菌毒素检测的局限性和面临的挑战,展望未来的研究方向,以期为真菌毒素检测研究提供理论支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙青月
余涛
彭双凤
孔德昭
刘畅
史巧巧
李雅琪
陈勇
关键词:  生物传感器  多重检测  真菌毒素  荧光信号    
Abstract: Mycotoxins are secondary metabolites produced by fungi. The three largest groups are aflatoxins, fumonisins, and ochratoxins. Food pro-ducts are susceptible to mycotoxin contamination during storage, processing, and transportation. In most cases, multiple mycotoxins occur simultaneously and create a superimposed effect that can be highly toxic, causing food safety problems and posing a serious health risk to humans. Simultaneous detection of multiple mycotoxins in food would be extremely helpful. This paper reviews the progress of research into the development of fluorescent biosensors for the detection of mycotoxins both domestically and abroad, with particular focus on multiplexed and simultaneous detection of mycotoxins, especially the types and composition of fluorescent biosensors. It also addresses detection methods and strategies involving aptamer and immunoassay techniques. The limitations and challenges of existing mycotoxin detection are discussed, and directions for future research are outlined with a view to providing theoretical support for mycotoxin detection research.
Key words:  biosensors    multiple detection    mycotoxin    fluorescent signal
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  X592  
基金资助: 国家自然科学基金青年项目(31901799);中国博士后基金面上项目(2021M692370)
通讯作者:  *李雅琪,江苏科技大学粮食学院副教授、硕士研究生导师。2008年江苏大学药学专业本科毕业,2011年江苏大学生药学专业硕士毕业,2017年江苏大学食品科学与工程专业博士毕业后到江苏科技大学工作至今。主要从事荧光纳米材料、生物传感器、粮油食品安全检测等方面的研究工作。发表论文10余篇,包括Biosens.Bioelectron.、Talanta、Anal.Chim.Acta、Carbon、J.Hazard.Mater.、Food Anal.Methods等。liyaqi@just.edu.cn
陈勇,华中科技大学环境科学与工程学院教授、博士研究生导师。2009年中国科学院生态环境研究中心环境科学专业博士毕业后到华中科技大学工作至今。主要从事水处理高级氧化、环境光化学研究工作,发表论文80余篇,包括Environmental Science and Technology、Water Research等。ychen@mail.hust.edu.cn   
作者简介:  孙青月,2017年6月毕业于江苏科技大学,获得工学学士学位。现为江苏科技大学生物技术学院研究生,在李雅琪导师的指导下进行研究,目前主要研究领域为荧光纳米材料的合成及制作生物传感器来检测粮油食品安全等方面的应用。
引用本文:    
孙青月, 余涛, 彭双凤, 孔德昭, 刘畅, 史巧巧, 李雅琪, 陈勇. 荧光生物传感器用于多种真菌毒素同时检测的研究进展[J]. 材料导报, 2024, 38(10): 22090139-11.
SUN Qingyue, YU Tao, PENG Shuangfeng, KONG Dezhao, LIU Chang, SHI Qiaoqiao, LI Yaqi, CHEN Yong. State of Research into Fluorescent Biosensors for the Simultaneous Detection of Multiple Mycotoxins. Materials Reports, 2024, 38(10): 22090139-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090139  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22090139
1 Kabak B, Dobson A D W, Var I. Critical Reviews in Food Science and Nutrition, 2006, 46(8), 593.
2 Zhou S, Xu L, Kuang H, et al. Analyst, 2020, 145(22), 7088.
3 Boevre M D, Mavungu J D D, Landschoot S, et al. World Mycotoxin Journal, 2012, 5(3), 207.
4 Pereira V L, Fernandes J O, Cunha S C. Trends in Food Science & Technology, 2014, 36(2), 96.
5 Ostry V, Malir F, Toman J, et al. Mycotoxin Research, 2016, 33(1), 65.
6 Freire L, Sant’ana A S. Food and Chemical Toxicology, 2018, 111, 189.
7 Chauhan R, Singh J, Sachdev T, et al. Biosensors and Bioelectronics, 2016, 81, 532.
8 Abia W A, Warth B, Sulyok M, et al. Food Control, 2013, 31(2), 438.
9 Var I, Kabak B, Gök F. Food Control, 2007, 18(1), 59.
10 Luz S R, Pazdiora P C, Dallagnol L J, et al. Food Chemistry, 2017, 220(1), 510.
11 Pietri A, Fortunati P, Mulazzi A, et al. Food Chemistry, 2016, 192, 235.
12 Ul-Hassan Z, Khan M Z, Khan A, et al. Journal of Immunotoxicology 2012, 9(4), 381.
13 Raymond S L, Smith T K, Swamy H V L N. Journal of Animal Science, 2003, 81(9), 2123.
14 Niazi S, Khan I M, Yan L, et al. Analytical and Bioanalytical Chemistry, 2019, 411, 1453.
15 Cheli F, Pinotti L, Campagnoli A, et al. Italian Journal of Food Science, 2008, 20(4), 447.
16 Milicevic D, Nastasijevic I, Petrovic Z. Journal of Environmental Science and Health, 2016, 34(1-4), 293.
17 Wu S, Duan N, Zhu C, et al. Biosensors and Bioelectronics, 2011, 30(1), 35.
18 Clark L C, Lyons C. Annals of the New York Academy of Sciences, 1962, 102(1), 29.
19 Naresh V, Lee N. Sensors and Actuators B: Chemical, 2021, 21(4), 1109.
20 Antonacci A, Arduini F, Moscone D, et al. TrAC Trends in Analytical Chemistry, 2018, 98, 95.
21 Arduini F, Cinti S, Scognamiglio V, et al. Analytica Chimica Acta, 2017, 959(Complete), 15.
22 Kirsch J, Siltanen C, Zhou Q, et al. Chemical Society Reviews, 2013, 42(22), 8733.
23 Rotariu L, Lagarde F, Jaffrezic-Renault N, et al. Trac Trends in Analytical Chemistry, 2016, 79, 80.
24 Wang Z, Li P, Cui L, et al. TrAC Trends in Analytical Chemistry, 2020, 129, 115959.
25 Zhu W, Li L, Zhou Z, et al. Food Chemistry, 2020, 319, 126544.
26 Wu Y, Zhou Y, Huang H, et al. Sensors and Actuators B: Chemical, 2020, 316, 128107.
27 Chen R, Li S, Sun Y, et al. Microchimica Acta, 2021, 188(8), 1.
28 Becheva Z R, Ivanov Y L, Godjevargova T I, et al. Food Additives & Contaminants, 2021, 38(12), 1218.
29 Borisov S M, Wolfbeis O S. Chemical Reviews, 2008, 108(2), 423.
30 Dong Y J, Liang J Y, Wang L, et al. Food and Nutrition in China, 2020, 26(2), 24 (in Chinese).
董燕婕, 梁京芸, 王磊, 等. 中国食物与营养, 2020, 26(2), 24.
31 Sekhon S S, Park G Y, Park D Y, et al. Toxicology Environmental Health Sciences, 2018, 10(5), 229.
32 Wang C, Tan R, Chen D. Talanta, 2018, 182, 363.
33 Wang X, Gao X, He J, et al. Analyst, 2019, 144(12), 3826.
34 Wei M, Xin L, Feng S, et al. Microchimica Acta, 2020, 187(2), 102.
35 Lu X, Wang C, Qian J, et al. Analytica Chimica Acta, 2018, 1047, 163.
36 Ma F, Li Y, Tang B, et al. Accounts of Chemical Research, 2016, 49(9), 1722.
37 Zheng Y, Wei L, Duan L, et al. Journal of Environmental Sciences, 2021, 106, 161.
38 Guo W, Fu Y, Liu S, et al. Analytical Chemistry, 2021, 93(18), 7079.
39 Wang P, Li H, Hassan M M, et al. Journal of Agricultural and Food Chemistry, 2019, 67(14), 4071.
40 Xue L, Zheng L, Zhang H, et al. Sensors and Actuators B: Chemical, 2018, 265, 318.
41 Zhong Z, Gao R, Chen Q, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117417.
42 Wang S. Journal of Alloys and Compounds, 2019, 770, 952.
43 Huang L, Li P, Lin C, et al. Biosensors and Bioelectronics, 2021, 183, 113217.
44 Hao L, Xuan H, Yan C, et al. Chinese Journal of Analytical Chemistry, 2022, 50(9), 1336 (in Chinese).
林浩, 贺璇, 陈燕, 等. 分析化学, 2022, 50(9), 1336.
45 Sapsford K E, Berti L, Medintz I L. Angewandte Chemie International Edition, 2006, 45(28), 4562.
46 Luo Y, Liu F, Li E, et al. Biosensors and Bioelectronics, 2020, 148, 111832.
47 Chen J, Cheng Y. Optics Communications, 2012, 285(6), 1404.
48 Yang X M, Yao T, Shi S L. Acta Prataculturae Sinica, 2019, 28(10), 209 (in Chinese).
杨晓玫, 姚拓, 师尚礼. 草业学报, 2019, 28(10), 209.
49 Sun X C, Lei Y. TrAC Trends in Analytical Chemistry, 2017, 89, 163.
50 Shang L, Xu J, Nienhaus G U. Nano Today, 2019, 28, 100767.
51 Rhouati A, Ahayat, Mishra R K, et al. Journal of Fluorescence, 2016, 26(4), 1.
52 Li J, Zhao X, Wang Y, et al. Analyst, 2021, 146(10), 3328.
53 Niazi S, Khan I M, Yan L, et al. Analytical and Bioanalytical Chemistry 2019, 411, 1453.
54 Li Y, Gecevicius M, Qiu J. Chemical Society Reviews, 2016, 45, 2090.
55 Pan Z, Lu Y, Liu F. Nature Materials, 2012, 11(1), 58.
56 Sun S, Wang H, Yan X. Accounts of Chemical Research, 2018, 51(5), 1131.
57 Jiang Y Y, Zhao X, Chen L J, et al. Talanta, 2021, 232, 122395.
58 Yang M, Cui M, Wang W, et al. Analytical and Bioanalytical Chemistry, 2020, 412(1), 81.
59 Sun J, Wang L, Shao J, et al. Analytical and Bioanalytical Chemistry, 2021, 413(26), 6489.
60 Jiang Y, Shi M, Liu Y, et al. Angewandte Chemie, 2017, 56(39), 11916.
61 Ruscito A, Derosa M C. Frontiers in Chemistry, 2016, 4, 14.
62 Zhang Y, Lai B S, Juhas M. Molecules, 2019, 24(5), 941.
63 Zhuo Z, Yu Y, Wang M, et al. International Journal of Molecular Sciences, 2017, 18(10), 2142.
64 Atar N, Eren T, Yola M L. Food Chemistry, 2015, 184, 7.
65 Shao X, Zhu L, Feng Y, et al. Analytica Chimica Acta, 2019, 1087, 113.
66 Wang G, Wang L, Li X, et al. Talanta, 2019, 197, 234.
67 Chen A, Yang S. Biosensors and Bioelectronics, 2015, 71, 230.
68 Hu J, Xia B, Elioff M S. Journal of Luminescence, 2016, 173, 57.
69 Khan Z G, Patil P O. Microchemical Journal, 2020, 157, 105011.
70 Song K M, Lee S, Ban C. Sensors and Actuators B: Chemical, 2012, 12(1), 612.
71 Yang Y, Yin Y, Wang S, et al. Analytica Chimica Acta, 2021, 1155, 338345.
72 Wu Z, He D, Cui B, et al. Microchimica Acta, 2020, 187(9), 495.
73 Jiang D, Huang C, Shao L, et al. Analytica Chimica Acta, 2020, 1127, 182.
74 Xiong Z, Wang Q, Xie Y, et al. Food Chemistry, 2021, 338, 128122.
75 Wang Q, Yang Q, Wu W. Frontiers in Microbiology, 2019, 10, 3139.
76 Wang C, Huang X, Tian X, et al. Analyst, 2019, 144(20), 6004.
77 Qian J, Cui H, Lu X, et al. Chemical Engineering Journal, 2020, 401, 126017.
78 He D, Wu Z, Cui B, et al. Mikrochim Acta, 2020, 187(4), 254.
79 Zhang Y, Lu T, Wang Y, et al. Journal of Agricultural and Food Che-mistry, 2018, 66(45), 12102.
80 Chen Q, Hu W, Sun C, et al. Analytica Chimica Acta, 2016, 938, 137.
81 Wu S, Duan N, Shi Z, et al. Analytical Chemistry, 2014, 86(6), 3100.
82 Jiang Y, Zhao X, Chen L, et al. Talanta, 2021, 232, 122395.
83 Lu T, Zhan S, Zhou Y, et al. Analytical Methods, 2018, 10(48), 5797.
84 Zhang F, Liu B, Sheng W, et al. Food Chemistry, 2018, 255, 421.
85 Huang Y, Xu T, Wang W, et al. Mikrochimica Acta, 2019, 187, 70.
86 Aranda P R, Messina G A, Bertolino F A, et al. Microchemical Journal, 2018, 141, 308.
87 Chen B, Wang F. Trends in Chemistry, 2020, 2(5), 427.
88 René W, Lenoble V, Chioukh M, et al. Sensors and Actuators B: Chemical, 2020, 319, 128252.
89 Chang X, Zhang Y, Liu H, et al. Analytical Methods, 2020, 12(3), 247.
90 Zhao Z, Wang H, Zhai W, et al. Toxins, 2020, 12(2), 136.
91 Li J, Cai T, Li W, et al. Journal of Agricultural and Food Chemistry, 2020, 69(1), 528.
92 Zhang L, Zhang Z, Tian Y, et al. Analytical and Bioanalytical Chemistry, 2021, 413, 3683.
93 Jin Y, Chen Q, Luo S, et al. Food Chemistry, 2020, 336, 127718.
94 Niazi S, Khan I M, Yu Y, et al. Sensors Actuators B: Chemical, 2020, 315, 128049.
95 Goryacheva O A, Guhrenz C, Schneider K, et al. ACS Appl Mater Interfaces, 2020, 12(22), 24575.
96 Hou S, Ma J, Cheng Y, et al. Food Control, 2020, 117, 107331.
97 Xua Y, Ma B, Chen E, et al. Food Chemistry, 2020, 336, 127713.
98 Tang X, Li P, Zhang Q, et al. Analytical Chemistry, 2017, 89(21), 11520.
99 Liu Z, Hua Q, Wang J, et al. Biosensors and Bioelectronics, 2020, 158, 112178.
100 Bi X, Luo L, Li L, et al. Talanta, 2020, 218, 121159.
101 Liu L, Huang Q, Tanveer Z I, et al. Sensors and Actuators B: Chemical, 2020, 302, 127212.
102 Zhan S, Huang X, Chen R, et al. Talanta, 2016, 158, 51.
103 Chen Y, Chen Q, Han M, et al. Food Chemistry, 2016, 213, 478.
104 Goryacheva O A, Guhrenz C, Schneider K, et al. ACS Applied Materials & Interfaces, 2020, 12(22), 24575.
105 Taranova N A, Berlina A N, Zherdev A V, et al. Biosensors and Bioelectronics, 2015, 63, 255.
106 Shao Y, Duan H, Zhou S, et al. Journal of Agricultural and Food Chemistry, 2019, 67(32), 9022.
107 Tang D, Lin Y, Zhou Q, et al. Analytical Chemistry, 2014, 86(22), 11451.
108 Kamala A, Ortiz J, Kimanya M, et al. Food Control, 2015, 54, 208.
109 Zhou Q, Tang D. TrAC Trends in Analytical Chemistry, 2020, 124, 115814.
110 Speijers G J A, Speijers M H M. Toxicology Letters, 2004, 153(1), 91.
111 Ma P, Xu W, Teng Z, et al. ACS Sensors, 2022, 7(7), 1847.
[1] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[2] 李佳炜, 朱宏伟. 纳米材料在病毒检测中的应用研究进展[J]. 材料导报, 2023, 37(6): 21070090-11.
[3] 刘志伟, 童朝阳, 杜斌, 汪将, 刘帅. 四面体DNA核酸适体生物传感器构建方法及应用[J]. 材料导报, 2022, 36(24): 21050199-6.
[4] 陈达, 刘美含, 张伟, 练美玲. 具有类过氧化物酶活性的纳米材料在比色分析中的研究进展[J]. 材料导报, 2022, 36(13): 20090055-14.
[5] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[6] 刘文清, 张涛. 细菌视紫红质在生物传感器中的应用进展[J]. 材料导报, 2021, 35(23): 23171-23182.
[7] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[8] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[9] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[10] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed