Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22080205-9    https://doi.org/10.11896/cldb.22080205
  高分子与聚合物基复合材料 |
超疏水蒸馏膜的功能改性研究进展
艾恒雨1, 梁洪博1, 刘乾亮1,*, 廉新宇1, 刘彩虹2
1 哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150080
2 重庆大学环境与生态学院,三峡库区生态环境教育部重点实验室,重庆 400044
Research Progress on Functional Modification of Superhydrophobic Distillation Membranes
AI Hengyu1, LIANG Hongbo1, LIU Qianliang1,*, LIAN Xinyu1, LIU Caihong2
1 School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
2 Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 21845KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 膜蒸馏技术因具有操作压力低、温差小、蒸馏液纯净、脱盐率高、可直接分离出结晶产物等优点而备受关注。但缺乏优异疏水性能的蒸馏膜是限制其应用的一个重要因素。迄今为止,科研人员在膜材料的疏水理论研究与超疏水蒸馏膜的功能改性方面开展了大量工作,研究者通过向膜面引入含硅或碳的纳米颗粒来提高膜面粗糙度,选用含氟的改性添加剂降低表面能,采用不同溶剂分散原材料并选择不同的成膜方式,使制备出的蒸馏膜疏水性能有了大幅度提高。
本文归纳总结了近年来超疏水蒸馏膜功能改性方法的研究进展,并对改性效果进行了对比分析。分类研究结果表明,表面涂覆法适用于不同类型的基膜,可实现对膜骨架和膜表面的同时改性,既增大膜通量又提高膜的抗污染性能,操作简单,可以应用于大规模生产。与涂覆法相比,静电纺丝掺杂法改性的膜可以最大程度地保持稳定性,在提高耐透水性的同时可以减小改性物质对通量的影响,但其应用范围受到基膜的限制。化学沉积法可获得有梯度的沉积物或混合镀层,相比于涂覆法更容易控制涂层的组成和厚度,可进行更加精准的膜表面改性过程。等离子体等非传统方法多为几种方法的联用,从改性剂材料、操作过程、操作条件等方面均为蒸馏膜的改性开辟了新方向。本文分类分析了不同改性方法采用的疏水添加剂、分散剂、操作方法与操作条件,并对比了不同方法改性后的膜通量、孔隙率、脱盐率、过滤周期等指标,结合过滤方式评价了不同改性方法的优缺点,展望了超疏水改性蒸馏膜商业化应用面临的问题及发展前景,旨在为开发成本低廉、操作简单、膜通量高、抗污染能力强的超疏水蒸馏膜提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
艾恒雨
梁洪博
刘乾亮
廉新宇
刘彩虹
关键词:  膜蒸馏  超疏水  膜改性  接触角  膜通量  耐透水压力    
Abstract: Membrane distillation technology has attracted much attention because of its advantages such as low operating pressure, small temperature difference, pure distillation liquid, highsalt rejection rate and direct separation of crystal products. However, the lack of distillation membranes with excellent hydrophobic properties is an important factor limiting its application. So far, researchers have carried out a lot of work in the hydrophobic theory research of membrane materials and functional modification of superhydrophobic distillation membranes, and made great progress in developing new modification methods and finding new modification additives. Based on the contact angle model, the researchers improved the surface roughness by introducing nanoparticles containing silicon or carbon into the membrane surface, selected modified additives containing fluorine groups to reduce the surface energy, dispersed raw materials with different solvents and selected different film-forming met-hods, which greatly improved the hydrophobic performance of the prepared distillation membrane.
In this paper, the research progress of functional modification of superhydrophobic distillation membranes in recent years is reviewed, and the modification effect is compared and discussed. The results of classification research show that the surface coating method is suitable for different types of base membranes, which can realize the simultaneous modification of membrane skeleton and its surface, not only increase the membrane flux but also improve the antifouling property. The operation is simple and can be applied to large-scale production. Compared with the coating method, the membrane modified by the electrostatic spinning doping method can maintain the stability to the maximum extent, improve the water permeability and reduce the influence of the modified substances on the flux, but the application range is limited by the base membranes. The chemical deposition method can obtain gradient deposits or mixed coatings. Compared with the coating method, it is easier to control the composition and thickness of the coating, and can carry out a more accurate film surface modification process. Unconventional methods such as plasma are mostly the combination of several methods, which has opened up a new direction for the modification of distillation membranes from the aspects of modifier materials, operating process, operating conditions, etc. The hydrophobic additives, dispersants, operating methods and conditions used in different modification processes are classified and analyzed, and the membrane flux, porosity, salt rejection rate, filtration pe-riod and other indicators after modification by different methods are compared. The advantages and disadvantages of different modification met-hods are evaluated in combination with the filtration methods, and the problems and development prospects of commercial application of superhydrophobic modified distillation membranes are prospected, aiming to provide beneficial help for the development of superhydrophobic distillation membranes with low cost, simple operation, high membrane flux and strong anti-pollution ability.
Key words:  membrane distillation    superhydrophobic    membrane modification    contact angle    membrane flux    liquid entry pressure
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TB34  
基金资助: 国家自然科学基金青年基金(52100024)
通讯作者:  *刘乾亮,哈尔滨理工大学材料科学与化学工程学院教师、硕士研究生导师。2004年哈尔滨工业大学给水排水工程专业本科毕业,2006年哈尔滨工业大学环境科学与工程专业硕士毕业,2012年哈尔滨工业大学市政工程专业博士毕业。目前主要从事膜材料开发与应用等方面的研究工作,发表论文10余篇。liuqianliang1982@sina.com   
作者简介:  艾恒雨,哈尔滨理工大学材料科学与化学工程学院教师。1998年河北建筑工程学院给排水专业本科毕业,2001年哈尔滨工业大学环境工程专业硕士毕业,2006年哈尔滨工业大学环境工程专业博士毕业。目前主要从事环境功能材料、水污染防治技术等方面的研究工作。发表论文30余篇。
引用本文:    
艾恒雨, 梁洪博, 刘乾亮, 廉新宇, 刘彩虹. 超疏水蒸馏膜的功能改性研究进展[J]. 材料导报, 2024, 38(10): 22080205-9.
AI Hengyu, LIANG Hongbo, LIU Qianliang, LIAN Xinyu, LIU Caihong. Research Progress on Functional Modification of Superhydrophobic Distillation Membranes. Materials Reports, 2024, 38(10): 22080205-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080205  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22080205
1 El-Dessouky H T, Ettouney H M, Al-Roumi Y. Chemical Engineering Journal, 1999, 73(2), 173.
2 Sayyaadi H, Saffari A. Applied Energy, 2010, 87(4), 1122.
3 Bahar R, Hawlader M N A, Woei L S. Desalination, 2004, 166, 123.
4 Rahman M S, Ahmed M, Chen X D. Separation and Purification Reviews, 2006, 35(2), 59.
5 Matin A, Khan Z, Zaidi S M J, et al. Desalination, 2011, 281, 1.
6 Cath T Y, Childress A E, Elimelech M. Journal of Membrane Science, 2006, 281(1-2), 70.
7 Wang Z, Xu C L, Huang Y. Materials Reports, 2013, 27(5), 1(in Chinese).
王铎, 许春玲, 黄燕. 材料导报, 2013, 27(5), 1.
8 Sadrzadeh M, Mohammadi T. Desalination, 2008, 221(1-3), 440.
9 Cui Y W, Zhao T T, Zhao Y C. Journal of Chongqing University of Technology(Natural Science), 2011, 25 (1), 29(in Chinese).
崔亚伟, 赵天涛, 赵由才. 重庆理工大学学报(自然科学版), 2011, 25 (1), 29.
10 Al-Obaidani S, Curcio E, Macedonio F, et al. Journal of Membrane Science, 2008, 323(1), 85.
11 Gontarek-Castro E, Castro-Muñoz R, Lieder M. Critical Reviews in Environmental Science and Technology, 2022, 52(12), 2104.
12 Liao Y, Loh C H, Wang R, et al. ACS Applied Materials & Interfaces, 2014, 6(18), 16035.
13 Liao Y, Wang R, Fane A G. Journal of Membrane Science, 2013, 440, 77.
14 Ma Z, Hong Y, Ma L, et al. Langmuir, 2009, 25(10), 5446.
15 Lu K J, Liang C Z, Chen Y, et al. Desalination, 2022, 527, 115579.
16 Li J, Ren L F, Zhou H S, et al. Journal of Membrane Science, 2021, 620, 118924.
17 Dong S S, Yun Y B, Wang M X, et al. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117, 56.
18 Zhao M, Zhang H F, Zhang Y S, et al. Materials Reports, 2017, 31(3), 116(in Chinese).
赵曼, 张慧峰, 张雨山, 等. 材料导报, 2017, 31(3), 116.
19 Alkhudhiri A, Darwish N, Hilal N. Desalination, 2012, 287, 2.
20 Ashoor B B, Mansour S, Giwa A, et al. Desalination, 2016, 398, 222.
21 Palanisami N, He K, Moon I S. Korean Journal of Chemical Enginee-ring, 2014, 31(1), 155.
22 Rezakazemi M. Desalination, 2018, 443, 323.
23 Attia H, Alexander S, Wright C J, et al. Desalination, 2017, 420, 318.
24 Bahar R, Hawlader M N A, Ariff T F. Desalination, 2015, 359, 71.
25 Janajreh I, El Kadi K, Hashaikeh R, et al. Desalination, 2017, 424, 122.
26 Abu-Zeid M A E R, Zhang Y, Dong H, et al. Desalination, 2015, 356, 1.
27 Lu K J, Zuo J, Chang J, et al. Environmental Science & Technology, 2018, 52(7), 4472.
28 Chiam C K, Sarbatly R. Chemical Engineering and Processing, Process Intensification, 2013, 74, 27.
29 Shirazi M M A, Kargari A, Tabatabaei M. Chemical Engineering Communications, 2015, 202(4), 457.
30 Pino J A, Tolle S, Gök R, et al. Food Chemistry, 2012, 132(3), 1436.
31 Said I A, Chomiak T, Floyd J, et al. Chemical Engineering and Proces-sing-Process Intensification, 2020, 153, 107960.
32 Olatunji S O, Camacho L M. Frontiers in Energy Research, 2018, 6, 130.
33 Shirtcliffe N J, McHale G, Atherton S, et al. Advances in Colloid and Interface Science, 2010, 161(1-2), 124.
34 Young T I. Philosophical Transactions of the Royal Society of London, 1804 (94), 1.
35 Wenzel R N. Industrial & Engineering Chemistry, 1936, 28(8), 988.
36 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 546.
37 Lu K J, Chen Y, Chung T S. Water Research, 2019, 162, 64.
38 Wang Q J, Chen Q M. Polymeric Materials Science and Engineering, 2005(2), 6(in Chinese).
王庆军, 陈庆民. 高分子材料科学与工程, 2005(2), 6.
39 Feng L, Li S, Li Y, et al. Advanced Materials, 2002, 14(24), 1857.
40 Kang G D, Cao Y M. Water Research, 2012, 46(3), 584.
41 Lyu X L. Membrane Science and Technology, 2020, 40(1), 196(in Chinese).
吕晓龙. 膜科学与技术, 2020, 40(1), 196.
42 Shin Y, Cho H, Choi J, et al. Desalination and Water Treatment, 2016, 57(22), 10020.
43 Jacob P, Zhang T, Laborie S, et al. Desalination, 2019, 468, 114086.
44 Guillen-Burrieza E, Mavukkandy M O, Bilad M R, et al. Journal of Membrane Science, 2016, 515, 163.
45 Lu K J, Zuo J, Chung T S. Journal of Membrane Science, 2016, 514, 165.
46 Wu C R, Tang W Y, Zhang J H, et al. Journal of Membrane Science, 2017, 543, 288.
47 Lee E J, Deka B J, An A K. Journal of Membrane Science, 2019, 573, 570.
48 Deka B J, Lee E J, Guo J, et al. Environmental Science & Technology, 2019, 53(9), 4948.
49 Seyed S S M, Rabiee H, Seyedi S M, et al. Journal of Membrane Science, 2017, 537, 140.
50 Ren L F, Xia F, Chen V, et al. Desalination, 2017, 423, 1.
51 Xu Z H, Liu Z, Song P F, et al. Desalination, 2017, 414, 10.
52 Shao Y S, Han M G, Wang Y Q, et al. Journal of Membrane Science, 2019, 579, 240.
53 Zhang Y X, Wang X Z, Cui Z L, et al. Desalination, 2017, 415, 58.
54 Li H B, Liu H J, Shi W Y, et al. Separation and Purification Technology, 2020, 251, 117348.
55 Wang M X, Liu G C, Yu H J, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 13452.
56 Zhang H Y, Li B B, Sun D, et al. Desalination, 2018, 429, 33.
57 Majeda K, Fares A, Mohammad A. International Journal of Energy Research, 2021, 45(6), 8151.
58 Tijing L D, Woo Y C, Shim W, et al. Journal of Membrane Science, 2016, 502, 158.
59 Ju J G, Li Z J, Lv Y, et al. Journal of Membrane Science, 2020, 611, 118420.
60 Niknejad A S, Bazgir S, Kargari A. Desalination, 2021, 511, 115108.
61 Dong Z Q, Wang B J, Ma X H, et al. ACS Applied Materials & Interfaces, 2015, 7(40), 22652.
62 Attia H, Alexander S, Wright C J, et al. Desalination, 2017, 420, 318.
63 Fouladivanda M, Karimi-Sabet J, Abbasi F, et al. Separation and Purification Technology, 2021, 256, 117809.
64 Vittorio B, Cristian L, Cejna A Q, et al. Nanomaterials, 2019, 9(8), 1159.
65 Zhao D L, Zuo J, Lu K J, et al. Desalination, 2017, 413, 119.
66 Chen L H, Huang A, Chen Y R, et al. Desalination, 2018, 428, 255.
67 Woo Y C, Chen Y, Tijing L D, et al. Journal of Membrane Science, 2017, 529, 234.
68 Li L, Abadikhah H, Wang J W, et al. Materials Letters, 2018, 232, 74.
69 Yan H Q, Lu X L, Wu C R, et al. Journal of Membrane Science, 2017, 533, 130.
70 Liu Z, Gao J N, Xiao C F. Desalination, 2021, 512, 115130.
71 Zhao F, Ma Z B, Xiao K, et al. Desalination, 2018, 443, 228.
72 Zhu Z G, Liu Y R, Hou H Q, et al. Environmental Science & Technology, 2018, 52(5), 3027.
73 Dong B B, Wang F H, Yang M Y, et al. Journal of Membrane Science, 2019, 579, 111.
[1] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[2] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[3] 朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
[4] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[5] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[6] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[7] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[8] 周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
[9] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[10] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[11] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[12] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[13] 王池嘉, 刘书佩, 王子华, 罗红欣. 防污涂层研究及应用新进展[J]. 材料导报, 2022, 36(23): 21020004-8.
[14] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[15] 刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed