Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 23010030-5    https://doi.org/10.11896/cldb.23010030
  高分子与聚合物基复合材料 |
涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响
张伟钢*, 李娇, 吕丹丹
滁州学院材料与化学工程学院,安徽 滁州 239000
Effect of Coating Additives on the Properties of PDMS Modified Epoxy Resin/Al Composite Coatings
ZHANG Weigang*, LI Jiao, LYU Dandan
College of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000, Anhui, China
下载:  全 文 ( PDF ) ( 17580KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步降低超疏水低红外发射率复合涂层的发射率并提高涂层的附着力,采用分散剂和硅烷偶联剂KH560来改善聚二甲基硅氧烷(PDMS)改性环氧树脂/Al复合涂层的填料分散状态及界面结构。系统研究了分散剂添加量(质量分数)及KH560添加量(质量分数)对涂层微结构、光学性能、疏水性能及附着力的影响规律。结果表明:聚羧酸盐阴离子型分散剂可通过静电斥力和降低填料颗粒的表面能来改善涂层中片状Al粉和纳米SiO2的分散状态,从而在一定程度上降低涂层的红外发射率,同时可使涂层具备较低的光泽度和良好的超疏水性能。KH560可利用其分子结构两端的甲氧基和环氧基在涂层中发挥桥连作用。通过KH560的桥连作用,涂层中的树脂基体和填料间可形成良好的化学键结合,从而使涂层表面结构更加致密,孔隙减少,进而可使涂层的发射率有所降低。同时,KH560改性可使涂层中的树脂基体与金属基板间形成化学键结合,从而可明显提高涂层的附着力。当涂层中分散剂和KH560的添加量分别为5%和3%时,涂层具有最佳的发射率(0.619)、光泽度(2.9)及附着力(1级)。同时,涂层具备良好的超疏水性能(水接触角为154°,滚动角为6°)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张伟钢
李娇
吕丹丹
关键词:  复合涂层  低红外发射率  超疏水  分散剂  硅烷偶联剂    
Abstract: In order to further reduce the emissivity of the super-hydrophobic low infrared emissivity composite coating and improve the adhesion strength of the coating, dispersant and silane coupling agent KH560 were used to improve the dispersed state and interface structure of the polydimethylsiloxane (PDMS) modified epoxy resin/Al composite coating. The effects of the addition amount of dispersant (mass fraction) and the addition amount of KH560 (mass fraction) on the microstructure, optical properties, hydrophobic properties and adhesion strength of the coating were systematically studied. The results show that the anionic dispersant of polycarboxylate can improve the dispersed state of flake Al powder and nano-SiO2 in the coating by electrostatic repulsion and reducing the surface energy of filler particles, so that the infrared emissivity of the coating can be reduced to a certain extent, and the coating can have a lower glossiness and good super-hydrophobic property. KH560 can play a bridging action in the coating by using the methoxide and epoxy groups at both ends of its molecular structure. Through the bridging effect of KH560, a good chemical bond can be formed between the resin matrix and the filler in the coating, so that the coating surface structure is more dense, the porosity is reduced, and the emissivity of the coating can be reduced. At the same time, the chemical bond between the resin matrix and the me-tal substrate can be formed by the modification of KH560, which can obviously improve the adhesion strength of the coating. The best emissivity (0.619), glossiness (2.9) and adhesion strength (grade 1) were obtained when the addition amount of dispersant and KH560 was 5% and 3%, respectively. At the same time, the coating has good super-hydrophobic properties (water contact angle is 154°, rolling angle is 6°).
Key words:  composite coating    low infrared emissivity    super-hydrophobic    dispersant    silane coupling agent
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TN213  
基金资助: 国家自然科学基金(61705029);安徽省高等学校科研计划重点项目(2022AH051121);安徽省高校优秀青年人才支持计划重点项目(gxyqZD2020044);滁州学院大学生创新训练计划项目(2022CXXL2050112)
通讯作者:  *张伟钢,滁州学院材料与化学工程学院副教授、硕士研究生导师。2006年河南科技学院化学工程系化学工程与工艺专业本科毕业,2009年广西大学化学化工学院化学工艺专业硕士毕业,2014年南京航空航天大学材料科学与技术学院材料物理与化学专业博士毕业,2014年9月到滁州学院工作至今。目前主要从事特种功能涂层材料方面的研究工作。发表学术论文50余篇,包括Progress in Organic Coatings、Infrared Physics & Technology、Materials Science and Engineering C、Materials Research Bulletin等。abczwg15@163.com   
引用本文:    
张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
ZHANG Weigang, LI Jiao, LYU Dandan. Effect of Coating Additives on the Properties of PDMS Modified Epoxy Resin/Al Composite Coatings. Materials Reports, 2024, 38(10): 23010030-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010030  或          http://www.mater-rep.com/CN/Y2024/V38/I10/23010030
1 Wen J, Li J B, Sun J Y, et al. Journal of Aeronautical Materials, 2021, 41(3), 66 (in Chinese).
文娇, 李介博, 孙井永, 等. 航空材料学报, 2021, 41(3), 66.
2 Lyu J, Liu Z W, Wu X H, et al. ACS Nano, 2019, 13, 2236.
3 Phan L, Walkup W G, Ordinario D D, et al. Advanced Materials, 2013, 25, 5621.
4 Fang S J, Wang W, Yu X L, et al. Materials Letter, 2015, 143, 120.
5 Solovyev A A, Rabotkin S V, Kovsharov N F. Materials Science in Semiconductor Processing, 2015, 38, 373.
6 Wang L, Xu G Y, Liu C Y, et al. Surface and Coatings Technology, 2019, 357, 559.
7 Zhang W G, Lv D D. Materials Research Bulletin, 2020, 124, 110747.
8 Chen X T, Zhou M, Zhao Y, et al. Green Chemistry, 2022, 24, 5280.
9 Zhou H P, Yu M J, Zhu M N, et al. Infrared Physics & Technology, 2021, 113, 103609.
10 Luo H, Zhang X, Huang S, et al. Infrared Physics & Technology, 2019, 99, 123.
11 Yu H J, Xu G Y, Shen X M, et al. Applied Surface Science, 2009, 255, 6077.
12 Zhang W G, Xu G Y, Ding R Y, et al. Physica B, 2013, 422, 36.
13 Yan X X, Xu G Y. Progress Organic Coatings, 2012, 73, 232.
14 Liu Z, Ban G, Ye S, et al. Optical Materials Express, 2016, 6, 3716.
15 Zhang W G, Ma Z W, Lv D D, et al. Infrared Physics & Technology, 2022, 126, 104351.
16 Fantucci S, Serra V. Energy and Buildings, 2019, 182, 300.
17 Pawar P G, Xing R M, Kambale R C, et al. Progress in Organic Coa-tings, 2017, 105, 235.
18 Satapathy M, Varshney P, Nanda D, et al. Surface & Coatings Technology, 2018, 341, 31.
19 Ye X X, Gui Y W, Ke L, et al. Golloids and Surfaces A, 2018, 551, 9.
20 Li C L, Sun Y C, Cheng M, et al. Chemical Engineering Journal, 2018, 333, 361.
21 Wang Z, Shen X P, Yan Y T, et al. Applied Surface Science, 2018, 450, 387.
22 Liu Y, Li S, Zhang J, et al. Chemical Engineering Journal, 2014, 248, 440.
23 Zhang W G, Zheng M Y, Lyu D D. Surface Technology, 2020, 49(7), 105 (in Chinese).
张伟钢, 郑梦影, 吕丹丹. 表面技术, 2020, 49(7), 105.
24 Zhang W G, Xu G Y, Ding R Y, et al. Materials Science and Enginee-ring C, 2013, 33(1), 99.
[1] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[2] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[3] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[4] 朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
[5] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[6] 艾恒雨, 梁洪博, 刘乾亮, 廉新宇, 刘彩虹. 超疏水蒸馏膜的功能改性研究进展[J]. 材料导报, 2024, 38(10): 22080205-9.
[7] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[8] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[9] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[10] 王喜茂, 赵运才, 郭伟玲, 马国政, 王慧鹏, 王海斗. 冷喷涂铜基陶瓷复合涂层沉积机理与结构性能优化研究进展[J]. 材料导报, 2023, 37(24): 22040223-10.
[11] 于本田, 杨玉祥, 刘江, 王永刚, 王朋勇, 谢超. 改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究[J]. 材料导报, 2023, 37(23): 22040197-6.
[12] 周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
[13] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[14] 陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
[15] 张曦挚, 崔红, 张嘉豪, 胡杨, 邓红兵. C/C-SiC:W/Cu复合涂层的制备和性能[J]. 材料导报, 2023, 37(15): 21120238-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed