Research Progress of Deposition Mechanism and Structure Performance Optimization of Cold Sprayed Copper-based Ceramic Composite Coatings
WANG Ximao1,2, ZHAO Yuncai1, GUO Weiling2,*, MA Guozheng2, WANG Huipeng1, WANG Haidou2,3,*
1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China 2 National Key Laboratory for Remanufacturing, Army Academy of Armored Force, Beijing 100072, China 3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Force, Beijing 100072, China
Abstract: The thermal expansion coefficient of ceramic particles is different from that of copper particles, so that the high temperature of thermal spray technology causes coatings delamination, crack and failure. Cold spraying has demonstrated superiority over conventional technology due to its low operating temperature, low thermal damage and high deposition efficiency. Cold spray can solve the damage caused by high-temperature cooling, so that cold spray has been proven successful in preparing copper-based ceramic composite coatings with high performance. In this work, firstly, we classify the three classical deposition theories of cold spray of metal and metal alloy coatings and summarize the deposition mechanism of Cu-based ceramic composite coatings. Secondly, we analyse the microstructure and performance of copper-based ceramic composite coatings including powder performance, substrate condition and cold spray parameters. Finally, we propose several critical unresolved issues in the field as future research directions.
1 Xu S C, Yang J, Cui Y R. Hot Working Technology, 2009, 38(10), 105 (in Chinese). 徐少春, 杨军, 崔雅茹. 热加工工艺, 2009, 38(10), 105. 2 Tam J, Yu B, Li W, et al. Scripta Materialia, 2022, 208, 114333. 3 Chen A H, Yan C, Meng Z L. China Metallurgical, 2019, 29(2), 7 (in Chinese). 陈爱华, 闫晨, 孟志立. 中国冶金, 2019, 29(2), 7. 4 Huang X J, Wu L J, Li B, et al. Journal of Mechanical Engineering, 2020, 56(10), 78 (in Chinese). 黄煊杰, 吴丽娟, 李波, 等. 机械工程学报, 2020, 56(10), 78. 5 Javdani A, Daei-Sorkhabi A H. Transactions of Nonferrous Metals Society of China, 2018, 28(7), 1298. 6 Li Z Y, Wang S J, Deng W J. Light Industry Technology, 2021, 37(4), 41 (in Chinese). 李滋阳, 王思佳, 邓文举. 轻工科技, 2021, 37(4), 41. 7 Pan S, Jin K, Wang T, et al. Friction, 2022, 10(10), 1596. 8 Du S M, Deng C, Cai H Z, et al. Surface Technology, 2019, 48(3), 134 (in Chinese). 杜三明, 刘超, 蔡宏章, 等. 表面技术, 2019, 48(3), 134. 9 Zhou L, Xing Z G, Wang H D, et al. Surface Technology, 2020, 49(1), 122 (in Chinese). 周雳, 邢志国, 王海斗, 等. 表面技术, 2020, 49(1), 122. 10 Xun Q T, Liu Y Q, Cai H Z, et al. Hot Working Technology, 2020, 49(20), 88 (in Chinese). 郇庆婷, 刘雅琴, 蔡宏章, 等. 热加工工艺, 2020, 49(20), 88. 11 Mi P, Ye F. Vacuum, 2018, 157, 17. 12 Li F Y, Li Z, Wang L M, et al. China Mechanical Engineering, 2019, 30(9), 1119 (in Chinese). 李方义, 李振, 王黎明, 等. 中国机械工程, 2019, 30(9), 1119. 13 Duan Y G. Researches of ZrB2/Cu multicomponent alloys coating prepared by laser cladding. Master’s Thesis, Yanshan University, China, 2015 (in Chinese). 段永岗. 激光熔覆制备ZrB2/Cu多元合金复合涂层的研究. 硕士学位论文, 燕山大学, 2015. 14 Lv X, Zhan Z, Cao H, et al. Surface and Coatings Technology, 2020, 396, 125937. 15 Zhang J F, Andrä H, Zhang X X, et al. Composite Structures, 2019, 226, 111281. 16 Chakrabarty R, Song J. Additive Manufacturing, 2022, 49, 102484. 17 Huang C J, Wu H J, Xie Y C, et al. Surface and Coatings Technology, 2019, 371, 211. 18 Triantou K I, Pantelis D I, Guipont V, et al. Wear, 2015, 336, 96. 19 Rech S, Surpi A, Vezzù S, et al. Vacuum, 2013, 94, 69. 20 Zhou H X, Li C X, Li C J. China Surface Engineering, 2020, 33(2), 1(in Chinese). 周红霞, 李成新, 李长久. 中国表面工程, 2020, 33(2), 1. 21 Chen W, Yu Y, Sui X, et al. Surface and Coatings Technology, 2020, 403, 126359. 22 Assadi H, Kreye H, Gärtner F, et al. Acta Materialia, 2016, 116, 382. 23 Chen X, Wang H T, Ji G C, et al. Transactions of Materials and Heat Treatment, 2013, 34(2), 162 (in Chinese). 陈枭, 王洪涛, 纪岗昌, 等. 材料热处理学报, 2013, 34(2), 162. 24 An S, Joshi B, Yarin A L, et al. Advanced Materials, 2020, 32(2), 1905028. 25 Chen Q, Yu M, Cao K, et al. Surface and Coatings Technology, 2022, 434, 128135. 26 Luo X T, Xie T, Li C J, et al. China Surface Engineering, 2020, 33(4), 68 (in Chinese). 雒晓涛, 谢天, 李长久, 等. 中国表面工程, 2020, 33(4), 68. 27 Wu L J, Wang W L, Li B, et al. Surface Technology, 2019, 48(2), 40(in Chinese). 吴丽娟, 汪伟林, 李波, 等. 表面技术, 2019, 48(2), 40. 28 Assadi H, Gärtner F, Stoltenhoff T, et al. Acta Materialia, 2003, 51(15), 4379. 29 Schmidt T, Gärtner F, Assadi H, et al. Acta Materialia, 2006, 54(3), 729. 30 Hassani-Gangaraj M, Veysset D, Champagne V K, et al. Acta Materialia, 2018, 158, 430. 31 Hassani-Gangaraj M, Veysset D, Nelson K A, et al. Scripta Materialia, 2018, 145, 9. 32 Hassani-Gangaraj M, Veysset D, Champagne V K, et al. Scripta Mate-rialia, 2019, 162, 515. 33 Li W, Li C, Liao H. Applied Surface Science, 2010, 256(16), 4953. 34 Ge Y, Luo X T, Li C J. Surface Technology, 2020, 49(7), 60 (in Chinese). 葛益, 雒晓涛, 李长久. 表面技术, 2020, 49(7), 60. 35 Chen C, Xie Y, Huang R, et al. Materials Letters, 2018, 210, 199. 36 Fernandez R, Jodoin B. Journal of Thermal Spray Technology, 2018, 27(4), 603. 37 Fernandez R, Jodoin B. Journal of Thermal Spray Technology, 2019, 28(4), 737. 38 He L, Hassani M. Journal of Thermal Spray Technology, 2020, 29(7), 1565. 39 Chen W Y, Tan H, Cheng J, et al. Materials Reports, 2022, 36(7), 58 (in Chinese). 陈文元, 谈辉, 程军, 等. 材料导报, 2022, 36(7), 58. 40 Yin S, Hassani M, Xie Q, et al. Scripta Materialia, 2021, 194, 113614. 41 Jodoin B, Raletz F, Vardelle M. Surface and Coatings Technology, 2006, 200(14), 4424. 42 Kim Y, Lee K. Journal of Materials Science & Technology, 2022, 97, 264. 43 Luo X, Li Y, Li C. Materials Letters, 2016, 163, 58. 44 Li W, Assadi H, Gaertner F, et al. Critical Reviews in Solid State and Materials Sciences, 2019, 44(2), 109. 45 Xie X, Yin S, Raoelison R, et al. Journal of Materials Science & Technology, 2021, 86, 20. 46 Chen Q P, Sun W, Jiang Z Z, et al. Materials Research and Application, 2021, 15(5), 496 (in Chinese). 谌曲平, 孙文, 江柱中, 等. 材料研究与应用, 2021, 15(5), 496. 47 Luo Z G, Chen Y X, Cheng Y H, et al. Surface Technology, 2021, 50(8), 180 (in Chinese). 罗政刚, 陈永雄, 程延海, 等. 表面技术, 2021, 50(8), 180. 48 Li W, Cao C, Yin S. Progress in Materials Science, 2020, 110, 100633. 49 Wei F J, Chou B Y, Fung K Z, et al. Surface and Coatings Technology, 2022, 434, 128128. 50 Sova A, Papyrin A, Smurov I. Journal of Thermal Spray Technology, 2009, 18(4), 633. 51 Kumar S, Bodapati B R, Vinay G, et al. Surface and Coatings Technology, 2021, 420, 127318. 52 Koivuluoto H, Vuoristo P. Journal of Thermal Spray Technology, 2010, 19(5), 1081. 53 Winnicki M, Małachowska A, Rutkowska-Gorczyca M, et al. Surface and Coatings Technology, 2015, 268, 108. 54 Winnicki M, łapa W, Znamirowski Z. Coatings (Basel), 2021, 11(134), 134. 55 Raoelison R N, Lalu K L, Costil S. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 63. 56 翟洪祥, 王文娟, 黄振莺. 中国专利, CN103880479A, 2014. 57 Wang W J. Preparation and applications of nanosize Ti3AlC2 powders using elemental Cu as the medium. Ph. D. Thesis, Beijing Jiaotong University, China, 2017 (in Chinese). 王文娟. Ti3AlC2/Cu纳米复合粉体及其块体材料的制备. 博士学位论文, 北京交通大学, 2017. 58 Liu X, Zhai H X, He Z Y, et al. Journal of Materials Heat Treatment, 2017, 38(4), 44 (in Chinese). 刘秀, 翟洪祥, 贺智勇, 等. 材料热处理学报, 2017, 38(4), 44. 59 Gao B. Preparation and properties of Cu coated Ti3AlC2 and its reinforced Ni matrix composites. Master’s Thesis, Beijing Jiaotong University, China, 2018 (in Chinese). 高波. Cu包覆Ti3AlC2及其增强Ni基复合材料的制备与性能研究. 硕士学位论文, 北京交通大学, 2018. 60 Gojon S. Etude sur l’élaboration et la caractérisation de revêtements en alliages d’aluminium et de magnésium par projection dynamique à froid pour la réparation de pièces aéronautiques. Ph. D. Thesis, Université de Technologie de Belfort-Montbeliard, France, 2015. 61 Kumar M, Gupta G K, Modi O P, et al. Canadian Metallurgical Quarterly, 2017, 56(1), 58. 62 赵明建, 陈一可. 中国专利, CN106270493B, 2017. 63 Yu T Y, Ma G Z, Guo W L, et al. Materials Reports, 2022, 36(7), 109 (in Chinese). 于天阳, 马国政, 郭伟玲, 等. 材料导报, 2022, 36(7), 109. 64 Li W, Zhang C, Liao H, et al. Surface and Coatings Technology, 2008, 202(19), 4855. 65 Liu H, Tariq N U H, Ren Y, et al. Surface and Coatings Technology, 2022, 429, 127972. 66 Wang F. Materials Reports, 2017, 31(14), 138 (in Chinese). 王锋. 材料导报, 2017, 31(14), 138. 67 Han C. Research on surface metallization of Al2O3 and SiC ceramic substrate by cold spraying. Master’s Thesis, Qingdao University of Science & Technology, China, 2022 (in Chinese). 韩超. 通过冷喷涂使氧化铝和碳化硅陶瓷表面金属化的研究. 硕士学位论文, 青岛科技大学, 2022. 68 Wong W, Rezaeian A, Irissou E, et al. Advanced Materials Research, 2010, 89, 639. 69 Kwon E H, Cho S H, Han J W, et al. Metals and Materials International, 2005, 11(5), 377. 70 Stoltenhoff T, Kreye H, Richter H J. Journal of Thermal Spray Technology, 2002, 11(4), 542. 71 Li W Y, Zhang C, Wang H T, et al. Applied Surface Science, 2007, 253(7), 3557. 72 Bhattiprolu V S, Johnson K W, Ozdemir O C, et al. Surface and Coa-tings Technology, 2018, 335, 1. 73 Cao C C, Li W Y, Yang K, et al. Materials Reports, 2019, 33(2), 277 (in Chinese). 曹聪聪, 李文亚, 杨康, 等. 材料导报, 2019, 33(2), 277. 74 Liu H H, Ren Y P, Li T F, et al. Material Protection, 2022, 55(1), 1 (in Chinese). 刘晗珲, 任宇鹏, 李铁藩, 等. 材料保护, 2022, 55(1), 1. 75 Marrocco T, Mccartney D G, Shipway P H, et al. Journal of Thermal Spray Technology, 2006, 15(2), 263. 76 Singh S, Singh H, Chaudhary S, et al. Surface and Coatings Technology, 2020, 389, 125619. 77 Christoulis D K, Guetta S, Guipont V, et al. Journal of Thermal Spray Technology, 2010, 20(3), 523.