Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22040223-10    https://doi.org/10.11896/cldb.22040223
  无机非金属及其复合材料 |
冷喷涂铜基陶瓷复合涂层沉积机理与结构性能优化研究进展
王喜茂1,2, 赵运才1, 郭伟玲2,*, 马国政2, 王慧鹏1, 王海斗2,3,*
1 江西理工大学机电工程学院,江西 赣州 341000
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Progress of Deposition Mechanism and Structure Performance Optimization of Cold Sprayed Copper-based Ceramic Composite Coatings
WANG Ximao1,2, ZHAO Yuncai1, GUO Weiling2,*, MA Guozheng2, WANG Huipeng1, WANG Haidou2,3,*
1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Force, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Force, Beijing 100072, China
下载:  全 文 ( PDF ) ( 35160KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶瓷颗粒与铜颗粒的热膨胀系数差异较大,故热喷涂的高温制备易导致涂层分层、开裂和失效。冷喷涂具有热输入低、不易氧化、沉积率高等特点,可以降低甚至避免高温冷却造成的相关缺陷,因此在制备高质量的铜基陶瓷复合涂层时的优势明显。本文首先对三种经典冷喷涂金属及金属合金涂层界面结合的基本概念和原理进行了概括,在此基础上对金属基陶瓷复合涂层的沉积机理进行了归纳总结;其次,从喷涂粉末制备工艺、喷涂前期基体状态和沉积过程工艺参数三个方面对铜基陶瓷复合涂层的组织结构和性能优化方法进行了梳理;最后,对冷喷涂铜基陶瓷复合涂层沉积技术和机理研究的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王喜茂
赵运才
郭伟玲
马国政
王慧鹏
王海斗
关键词:  冷喷涂  铜基陶瓷复合涂层  沉积机理  喷涂粉末制备  冷喷涂参数    
Abstract: The thermal expansion coefficient of ceramic particles is different from that of copper particles, so that the high temperature of thermal spray technology causes coatings delamination, crack and failure. Cold spraying has demonstrated superiority over conventional technology due to its low operating temperature, low thermal damage and high deposition efficiency. Cold spray can solve the damage caused by high-temperature cooling, so that cold spray has been proven successful in preparing copper-based ceramic composite coatings with high performance. In this work, firstly, we classify the three classical deposition theories of cold spray of metal and metal alloy coatings and summarize the deposition mechanism of Cu-based ceramic composite coatings. Secondly, we analyse the microstructure and performance of copper-based ceramic composite coatings including powder performance, substrate condition and cold spray parameters. Finally, we propose several critical unresolved issues in the field as future research directions.
Key words:  cold spray    copper-based ceramic composite coating    deposition mechanism    preparation of spray powder    cold spray parameter
发布日期:  2023-12-19
ZTFLH:  TB333  
基金资助: 国家自然科学基金(52005511;52130509);某类重点项目(ZD-302-12)
通讯作者:  *郭伟玲,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员。2004年山西师范大学化学专业本科毕业,2007年山东师范大学物化专业硕士毕业,2010年北京师范大学物理化学专业博士毕业。目前主要从事表面工程、冷喷涂技术等方面的研究工作。发表论文20余篇,主持项目3项,参与项目10余项,发表学术论文20余篇,获授权国家发明专利2项,受理5项,参编专著3部。
王海斗,研究员,博士研究生导师,陆军装甲兵学院机械产品再制造国家工程研究中心主任。2003年毕业于清华大学并获得博士学位。国家杰出青年科学基金获得者。目前的研究领域包括表面工程、再制造和摩擦学研究。发表SCI论文300余篇,出版著作10部,授权国内外知识产权100余件。guoweiling_426@163.com;whaidou2021@163.com   
作者简介:  王喜茂,2020年6月于赣南科技学院获得工学学士学位。现为江西理工大学机电工程学院硕士研究生,在赵运才教授、马国政副研究员和郭伟玲副研究员的指导下进行研究。目前主要研究领域为冷喷涂技术。
引用本文:    
王喜茂, 赵运才, 郭伟玲, 马国政, 王慧鹏, 王海斗. 冷喷涂铜基陶瓷复合涂层沉积机理与结构性能优化研究进展[J]. 材料导报, 2023, 37(24): 22040223-10.
WANG Ximao, ZHAO Yuncai, GUO Weiling, MA Guozheng, WANG Huipeng, WANG Haidou. Research Progress of Deposition Mechanism and Structure Performance Optimization of Cold Sprayed Copper-based Ceramic Composite Coatings. Materials Reports, 2023, 37(24): 22040223-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040223  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22040223
1 Xu S C, Yang J, Cui Y R. Hot Working Technology, 2009, 38(10), 105 (in Chinese).
徐少春, 杨军, 崔雅茹. 热加工工艺, 2009, 38(10), 105.
2 Tam J, Yu B, Li W, et al. Scripta Materialia, 2022, 208, 114333.
3 Chen A H, Yan C, Meng Z L. China Metallurgical, 2019, 29(2), 7 (in Chinese).
陈爱华, 闫晨, 孟志立. 中国冶金, 2019, 29(2), 7.
4 Huang X J, Wu L J, Li B, et al. Journal of Mechanical Engineering, 2020, 56(10), 78 (in Chinese).
黄煊杰, 吴丽娟, 李波, 等. 机械工程学报, 2020, 56(10), 78.
5 Javdani A, Daei-Sorkhabi A H. Transactions of Nonferrous Metals Society of China, 2018, 28(7), 1298.
6 Li Z Y, Wang S J, Deng W J. Light Industry Technology, 2021, 37(4), 41 (in Chinese).
李滋阳, 王思佳, 邓文举. 轻工科技, 2021, 37(4), 41.
7 Pan S, Jin K, Wang T, et al. Friction, 2022, 10(10), 1596.
8 Du S M, Deng C, Cai H Z, et al. Surface Technology, 2019, 48(3), 134 (in Chinese).
杜三明, 刘超, 蔡宏章, 等. 表面技术, 2019, 48(3), 134.
9 Zhou L, Xing Z G, Wang H D, et al. Surface Technology, 2020, 49(1), 122 (in Chinese).
周雳, 邢志国, 王海斗, 等. 表面技术, 2020, 49(1), 122.
10 Xun Q T, Liu Y Q, Cai H Z, et al. Hot Working Technology, 2020, 49(20), 88 (in Chinese).
郇庆婷, 刘雅琴, 蔡宏章, 等. 热加工工艺, 2020, 49(20), 88.
11 Mi P, Ye F. Vacuum, 2018, 157, 17.
12 Li F Y, Li Z, Wang L M, et al. China Mechanical Engineering, 2019, 30(9), 1119 (in Chinese).
李方义, 李振, 王黎明, 等. 中国机械工程, 2019, 30(9), 1119.
13 Duan Y G. Researches of ZrB2/Cu multicomponent alloys coating prepared by laser cladding. Master’s Thesis, Yanshan University, China, 2015 (in Chinese).
段永岗. 激光熔覆制备ZrB2/Cu多元合金复合涂层的研究. 硕士学位论文, 燕山大学, 2015.
14 Lv X, Zhan Z, Cao H, et al. Surface and Coatings Technology, 2020, 396, 125937.
15 Zhang J F, Andrä H, Zhang X X, et al. Composite Structures, 2019, 226, 111281.
16 Chakrabarty R, Song J. Additive Manufacturing, 2022, 49, 102484.
17 Huang C J, Wu H J, Xie Y C, et al. Surface and Coatings Technology, 2019, 371, 211.
18 Triantou K I, Pantelis D I, Guipont V, et al. Wear, 2015, 336, 96.
19 Rech S, Surpi A, Vezzù S, et al. Vacuum, 2013, 94, 69.
20 Zhou H X, Li C X, Li C J. China Surface Engineering, 2020, 33(2), 1(in Chinese).
周红霞, 李成新, 李长久. 中国表面工程, 2020, 33(2), 1.
21 Chen W, Yu Y, Sui X, et al. Surface and Coatings Technology, 2020, 403, 126359.
22 Assadi H, Kreye H, Gärtner F, et al. Acta Materialia, 2016, 116, 382.
23 Chen X, Wang H T, Ji G C, et al. Transactions of Materials and Heat Treatment, 2013, 34(2), 162 (in Chinese).
陈枭, 王洪涛, 纪岗昌, 等. 材料热处理学报, 2013, 34(2), 162.
24 An S, Joshi B, Yarin A L, et al. Advanced Materials, 2020, 32(2), 1905028.
25 Chen Q, Yu M, Cao K, et al. Surface and Coatings Technology, 2022, 434, 128135.
26 Luo X T, Xie T, Li C J, et al. China Surface Engineering, 2020, 33(4), 68 (in Chinese).
雒晓涛, 谢天, 李长久, 等. 中国表面工程, 2020, 33(4), 68.
27 Wu L J, Wang W L, Li B, et al. Surface Technology, 2019, 48(2), 40(in Chinese).
吴丽娟, 汪伟林, 李波, 等. 表面技术, 2019, 48(2), 40.
28 Assadi H, Gärtner F, Stoltenhoff T, et al. Acta Materialia, 2003, 51(15), 4379.
29 Schmidt T, Gärtner F, Assadi H, et al. Acta Materialia, 2006, 54(3), 729.
30 Hassani-Gangaraj M, Veysset D, Champagne V K, et al. Acta Materialia, 2018, 158, 430.
31 Hassani-Gangaraj M, Veysset D, Nelson K A, et al. Scripta Materialia, 2018, 145, 9.
32 Hassani-Gangaraj M, Veysset D, Champagne V K, et al. Scripta Mate-rialia, 2019, 162, 515.
33 Li W, Li C, Liao H. Applied Surface Science, 2010, 256(16), 4953.
34 Ge Y, Luo X T, Li C J. Surface Technology, 2020, 49(7), 60 (in Chinese).
葛益, 雒晓涛, 李长久. 表面技术, 2020, 49(7), 60.
35 Chen C, Xie Y, Huang R, et al. Materials Letters, 2018, 210, 199.
36 Fernandez R, Jodoin B. Journal of Thermal Spray Technology, 2018, 27(4), 603.
37 Fernandez R, Jodoin B. Journal of Thermal Spray Technology, 2019, 28(4), 737.
38 He L, Hassani M. Journal of Thermal Spray Technology, 2020, 29(7), 1565.
39 Chen W Y, Tan H, Cheng J, et al. Materials Reports, 2022, 36(7), 58 (in Chinese).
陈文元, 谈辉, 程军, 等. 材料导报, 2022, 36(7), 58.
40 Yin S, Hassani M, Xie Q, et al. Scripta Materialia, 2021, 194, 113614.
41 Jodoin B, Raletz F, Vardelle M. Surface and Coatings Technology, 2006, 200(14), 4424.
42 Kim Y, Lee K. Journal of Materials Science & Technology, 2022, 97, 264.
43 Luo X, Li Y, Li C. Materials Letters, 2016, 163, 58.
44 Li W, Assadi H, Gaertner F, et al. Critical Reviews in Solid State and Materials Sciences, 2019, 44(2), 109.
45 Xie X, Yin S, Raoelison R, et al. Journal of Materials Science & Technology, 2021, 86, 20.
46 Chen Q P, Sun W, Jiang Z Z, et al. Materials Research and Application, 2021, 15(5), 496 (in Chinese).
谌曲平, 孙文, 江柱中, 等. 材料研究与应用, 2021, 15(5), 496.
47 Luo Z G, Chen Y X, Cheng Y H, et al. Surface Technology, 2021, 50(8), 180 (in Chinese).
罗政刚, 陈永雄, 程延海, 等. 表面技术, 2021, 50(8), 180.
48 Li W, Cao C, Yin S. Progress in Materials Science, 2020, 110, 100633.
49 Wei F J, Chou B Y, Fung K Z, et al. Surface and Coatings Technology, 2022, 434, 128128.
50 Sova A, Papyrin A, Smurov I. Journal of Thermal Spray Technology, 2009, 18(4), 633.
51 Kumar S, Bodapati B R, Vinay G, et al. Surface and Coatings Technology, 2021, 420, 127318.
52 Koivuluoto H, Vuoristo P. Journal of Thermal Spray Technology, 2010, 19(5), 1081.
53 Winnicki M, Małachowska A, Rutkowska-Gorczyca M, et al. Surface and Coatings Technology, 2015, 268, 108.
54 Winnicki M, łapa W, Znamirowski Z. Coatings (Basel), 2021, 11(134), 134.
55 Raoelison R N, Lalu K L, Costil S. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 63.
56 翟洪祥, 王文娟, 黄振莺. 中国专利, CN103880479A, 2014.
57 Wang W J. Preparation and applications of nanosize Ti3AlC2 powders using elemental Cu as the medium. Ph. D. Thesis, Beijing Jiaotong University, China, 2017 (in Chinese).
王文娟. Ti3AlC2/Cu纳米复合粉体及其块体材料的制备. 博士学位论文, 北京交通大学, 2017.
58 Liu X, Zhai H X, He Z Y, et al. Journal of Materials Heat Treatment, 2017, 38(4), 44 (in Chinese).
刘秀, 翟洪祥, 贺智勇, 等. 材料热处理学报, 2017, 38(4), 44.
59 Gao B. Preparation and properties of Cu coated Ti3AlC2 and its reinforced Ni matrix composites. Master’s Thesis, Beijing Jiaotong University, China, 2018 (in Chinese).
高波. Cu包覆Ti3AlC2及其增强Ni基复合材料的制备与性能研究. 硕士学位论文, 北京交通大学, 2018.
60 Gojon S. Etude sur l’élaboration et la caractérisation de revêtements en alliages d’aluminium et de magnésium par projection dynamique à froid pour la réparation de pièces aéronautiques. Ph. D. Thesis, Université de Technologie de Belfort-Montbeliard, France, 2015.
61 Kumar M, Gupta G K, Modi O P, et al. Canadian Metallurgical Quarterly, 2017, 56(1), 58.
62 赵明建, 陈一可. 中国专利, CN106270493B, 2017.
63 Yu T Y, Ma G Z, Guo W L, et al. Materials Reports, 2022, 36(7), 109 (in Chinese).
于天阳, 马国政, 郭伟玲, 等. 材料导报, 2022, 36(7), 109.
64 Li W, Zhang C, Liao H, et al. Surface and Coatings Technology, 2008, 202(19), 4855.
65 Liu H, Tariq N U H, Ren Y, et al. Surface and Coatings Technology, 2022, 429, 127972.
66 Wang F. Materials Reports, 2017, 31(14), 138 (in Chinese).
王锋. 材料导报, 2017, 31(14), 138.
67 Han C. Research on surface metallization of Al2O3 and SiC ceramic substrate by cold spraying. Master’s Thesis, Qingdao University of Science & Technology, China, 2022 (in Chinese).
韩超. 通过冷喷涂使氧化铝和碳化硅陶瓷表面金属化的研究. 硕士学位论文, 青岛科技大学, 2022.
68 Wong W, Rezaeian A, Irissou E, et al. Advanced Materials Research, 2010, 89, 639.
69 Kwon E H, Cho S H, Han J W, et al. Metals and Materials International, 2005, 11(5), 377.
70 Stoltenhoff T, Kreye H, Richter H J. Journal of Thermal Spray Technology, 2002, 11(4), 542.
71 Li W Y, Zhang C, Wang H T, et al. Applied Surface Science, 2007, 253(7), 3557.
72 Bhattiprolu V S, Johnson K W, Ozdemir O C, et al. Surface and Coa-tings Technology, 2018, 335, 1.
73 Cao C C, Li W Y, Yang K, et al. Materials Reports, 2019, 33(2), 277 (in Chinese).
曹聪聪, 李文亚, 杨康, 等. 材料导报, 2019, 33(2), 277.
74 Liu H H, Ren Y P, Li T F, et al. Material Protection, 2022, 55(1), 1 (in Chinese).
刘晗珲, 任宇鹏, 李铁藩, 等. 材料保护, 2022, 55(1), 1.
75 Marrocco T, Mccartney D G, Shipway P H, et al. Journal of Thermal Spray Technology, 2006, 15(2), 263.
76 Singh S, Singh H, Chaudhary S, et al. Surface and Coatings Technology, 2020, 389, 125619.
77 Christoulis D K, Guetta S, Guipont V, et al. Journal of Thermal Spray Technology, 2010, 20(3), 523.
[1] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[2] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[3] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[4] 张林伟, 余玖明, 宁先进, 王全胜. 预氧化真空度对冷喷涂CoNiCrAlY涂层高温氧化行为的影响[J]. 材料导报, 2022, 36(17): 21030092-5.
[5] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[6] 杨理京,李争显,黄春良,王培,姚建华. 激光辅助冷喷涂制备高硬度材料涂层的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 412-417.
[7] 陈正涵,孙晓峰,李占明,史玉鹏. 镍铝青铜基冷喷涂Cu402F与Cu涂层的力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1618-1622.
[8] 何培龙, 程方杰, 齐书梅, 肖兵, 赵欢. 冷喷涂Zn粉后5083铝合金的中温钎焊研究*[J]. 《材料导报》期刊社, 2017, 31(4): 52-55.
[9] 王锋. 冷喷涂中颗粒形状和温度对其沉积过程的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 138-142.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed