Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21120238-6    https://doi.org/10.11896/cldb.21120238
  金属与金属基复合材料 |
C/C-SiC:W/Cu复合涂层的制备和性能
张曦挚1, 崔红1,*, 张嘉豪2, 胡杨1, 邓红兵1
1 西安航天复合材料研究所,西安 710025
2 西安航天动力测控技术研究所,西安 710025
C/C-SiC:Preparation and Properties of W/Cu Composite Coatings
ZHANG Xizhi1, CUI Hong1,*, ZHANG Jiahao2, HU Yang1, DENG Hongbing1
1 Research Institute of Xi'an Aerospace Composites Materials, Xi'an 710025, China
2 Xi'an Institute of Aerospace Dynamics Measurement and Control Technology, Xi'an 710025, China
下载:  全 文 ( PDF ) ( 31472KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高C/C-SiC复合材料的耐烧蚀性能,改善W涂层的脆性,通过包覆法制备了W/Cu复合粉末,在C/C-SiC复合材料表面通过大气等离子喷涂技术(APS)制备了W涂层、W/Cu复合涂层,研究了不同W/Cu质量比(10∶0.5、10∶1、10∶1.5)对复合涂层的微观结构、显微硬度、耐烧蚀、抗冲刷性能的影响。结果表明,大气等离子喷涂制备的W/Cu复合涂层会形成特殊的Cu/W/Cu/W交替结构,随着Cu的增加,涂层表面夹生W颗粒增多,W/Cu复合涂层的显微硬度降低,最高下降幅度为45%,但W涂层脆性得到明显改善,抗冲刷性能明显增强。在热流密度为4 200 kW/m2的氧乙炔火焰考核60 s的过程中,W/Cu复合涂层由于Cu的低熔点、高沸点的发汗特性,会吸收大量热量,从而有效降低涂层表面温度,延缓烧蚀,在W/Cu质量比为10∶1时,W/Cu复合涂层烧蚀中心面直径相较于W涂层缩小57.4%,线烧蚀率和质量烧蚀率分别降低45.5%、42%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张曦挚
崔红
张嘉豪
胡杨
邓红兵
关键词:  W/Cu  复合涂层  包覆法  大气等离子喷涂  C/C-SiC复合材料  烧蚀性能    
Abstract: In order to improve the ablation resistance of C/C-SiC composites and improve the brittleness of W coatings, W/Cu composite powders were prepared by cladding method, and W coating, W/Cu composite coating were prepared on the surface of C/C-SiC composites by atmosphe-ric plasma spraying technology. The effects of different W/Cu ratios (10∶0.5, 10∶1, 10∶1.5) on the microstructure, microhardness, ablation resistance and erosion resistance of the composite coatings were investigated. The results show that the W/Cu composite coating prepared by atmospheric plasma spraying will form a special Cu/W/Cu/W alternating structure. The microhardness decreased, with a maximum decrease of 45%, but the brittleness of the W coating was significantly improved, and the erosion resistance was significantly enhanced. In the process of oxyacetylene flame test with heat flux density of 4 200 kW/m2 for 60 s, the W/Cu composite coating will absorb a lot of heat due to the characteristics of low melting point and high boiling point of Cu, which can effectively reduce the surface temperature of the coating and delay the ablation. When the mass ratio of W/Cu was 10∶1, the diameter of the ablation center surface of the W/Cu composite coating was reduced by 57.4% compared with that of the W coating, and the line ablation rate and mass ablation rate were reduced by 45.5% and 42%, respectively.
Key words:  tungsten/cooper    composite coating    coating method    APS    C/C-SiC composite    ablation resistance property
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TG174.4  
基金资助: 国防科技创新特区项目(19H86303ZD102006)
通讯作者:  * 崔红,2000年获西北工业大学材料学博士学位,2004年被评聘为研究员。中国电工学会炭-石墨专业委员会副主任委员、陕西省有突出贡献专家、航天十佳科技青年、陕西省国防十大杰出青年,享受政府特殊津贴,获2005—2007年度航天奖。主要从事航天发动机用炭/炭复合材料技术基础、抗烧蚀炭/炭复合材料研究。cuihong1969@126.com   
作者简介:  张曦挚,2019年毕业于四川大学高分子科学与工程学院,获得工学学士学位。现为西安航天复合材料研究所硕士研究生,在崔红研究员的指导下进行研究。目前主要研究领域为高温材料及制造。
引用本文:    
张曦挚, 崔红, 张嘉豪, 胡杨, 邓红兵. C/C-SiC:W/Cu复合涂层的制备和性能[J]. 材料导报, 2023, 37(15): 21120238-6.
ZHANG Xizhi, CUI Hong, ZHANG Jiahao, HU Yang, DENG Hongbing. C/C-SiC:Preparation and Properties of W/Cu Composite Coatings. Materials Reports, 2023, 37(15): 21120238-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120238  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21120238
1 Brozek V, Vokac M, Kolisko J, et al. Metalurgija, 2017, 56 (1-2), 79.
2 Chong F, Chen J. Journal of Alloys and Compounds, 2021, 861, 158422.
3 Guo S, Ge C, Feng Y, et al. Rare Metal Materials and Engineering, 2011, 40 (12), 2167.
4 Wang F Q, Zhang L, Chen J. Aerospace Materials & Technology, 2020, 50 (6), 8 (in Chinese).
王富强, 张力, 陈建. 宇航材料工艺, 2020, 50 (6), 8.
5 Zhu Y, Meng X L, Cui H, et al. Journal of Propulsion Technology, 2020, 41 (3), 700 (in Chinese).
朱阳, 孟祥利, 崔红, 等. 推进技术, 2020, 41 (3), 700.
6 Zhang H, Fan J, Liu T, et al. Vacuum, 2021, 194, 110563.
7 Zhang Q, Liang S, Zhuo L. Materials Science and Technology, 2017, 33 (17), 2071.
8 Chen P, Shen Q, Luo G, et al. Surface & Coatings Technology, 2016, 288, 8.
9 Niu Y, Lu D, Huang L, et al. Vacuum, 2015, 117, 98.
10 Matejicek J, Chraska P, Linke J. Journal of Thermal Spray Technology, 2007, 16 (1), 64.
11 Zhang Q, Cui H, Zhu Y, et al. Acta Materiae Compositae Sinica, 2018, 35 (3), 640 (in Chinese).
张强, 崔红, 朱阳, 等. 复合材料学报, 2018, 35 (3), 640.
12 Zhu Y, Hu Y, Cui H, et al. Ceramics International, 2021, 47 (5), 6554.
13 Hu D, Zheng X, Niu Y, et al. Journal of Thermal Spray Technology, 2008, 17 (3), 377.
14 Chen Z, Li Y, Cheng L, et al. Nuclear Fusion, 2021, 61 (12), 126024.
15 Kim H, Lee H J, Kim S H, et al. Fusion Engineering and Design, 2016, 109, 590.
16 Wang P, Jacob W, Gao L, et al. Physica Scripta, 2014, T159, 014046.
17 Deng N, Tang J, Xiong T, et al. Surface & Coatings Technology, 2019, 368, 8.
18 Zhou Z, Niu F, Hu X, et al. Advanced Engineering Materials, DOI:10. 1002/adem. 202001457.
19 Guo L J, Peng J, Guo C, et al. Vacuum, 2017, 143, 262.
20 Guo L J, Peng J, Wang H Q, et al. Journal of Alloys and Compounds, 2017, 703, 560.
[1] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[2] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[3] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[4] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[5] 卞灿星, 钱钰, 崔功军, 刘燕萍, 寇子明. 钇(Y)元素强化的CoCrNiFe基高温自润滑复合涂层的摩擦学性能[J]. 材料导报, 2022, 36(8): 21010202-8.
[6] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[7] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[8] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[9] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[10] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[11] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[12] 李英, 李平. 激光熔覆制备抗冲蚀磨损镍基复合涂层的研究进展[J]. 材料导报, 2021, 35(15): 15162-15168.
[13] 秦建, 龙伟民, 路全彬, 李胜男, 黄俊兰. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析[J]. 材料导报, 2020, 34(Z2): 457-461.
[14] 张勇, 张耿飞, 张宇涛, 宁璠, 晁奕, 冯鹏发. CeO2掺杂Si-B复合涂层的制备及氧化行为[J]. 材料导报, 2020, 34(18): 18035-18038.
[15] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed