Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22040300-18    https://doi.org/10.11896/cldb.22040300
  无机非金属及其复合材料 |
非共价键化学修饰碳纳米管的分散及其机理
陈点1, 吕仕铭2, 汪羽翎1,*
1 上海交通大学化学化工学院, 上海 200240
2 苏州世名科技股份有限公司,江苏 昆山 215337
Dispersion and Mechanism of Non-covalent Chemically Modified Carbon Nanotubes
CHEN Dian1, LYU Shiming2, WANG Yuling1,*
1 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Suzhou Sunmun Technology Co., Ltd., Kunshan 215337, Jiangsu, China
下载:  全 文 ( PDF ) ( 42345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米管(CNTs)是纳米材料中富有代表性的性能优异的材料之一,其独特的结构和其优异的力学、电子及光学等性能使之成为理想的纳米材料,被广泛地应用于各个领域之中。然而,CNTs具有巨大的表面积和长径比,管与管之间存在极强的范德华力和π-π堆积,其在自然状态下通常以平行管束的形式存在,这极大地阻碍了CNTs进一步的发展和应用。近年来,基于非共价化学修饰原理,人们不断研究合成合适的CNTs分散剂,探究CNTs分散的机理,尝试解决CNTs团聚的问题。但是在实际的工业应用领域中,已有的科学研究成果并不能满足工业上对CNTs分散的需求。本文主要总结了聚合物型非共价分散剂分散CNTs的研究进展,介绍了非共价分散剂分散CNTs的原理,分类分析了CNTs在溶液中和聚合物熔体中分散的特点,最后展望了非共价分散剂在溶液中分散CNTs的研究方向和在聚合物熔体中分散CNTs的非共价分散剂的设计思路,以期拓展CNTs在工业领域的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈点
吕仕铭
汪羽翎
关键词:  碳纳米管  分散机理  非共价修饰  聚合物分散剂    
Abstract: Carbon nanotubes (CNTs) are one of the most representative nanomaterials with excellent performance. Their unique structure combined with their excellent mechanical, electronic and optical properties make them ideal nanomaterials, which are widely used in various fields. However, CNTs have huge surface area and aspect ratio, extremely strong van der Waals forces and π-π accumulation between tubes, which usually exist in the form of parallel tube bundles in the natural state, which greatly hinder the further research and application of CNTs. In recent years, based on the principle of non-covalent chemical modification, people have continuously studied the synthesis of appropriate dispersants for CNTs, explored the mechanism of CNTs dispersion, and attempted to solve the problem of CNTs agglomeration. However, in the field of actual industrial application, the existing scientific research results cannot meet the industrial demand for the dispersion of CNTs. This paper mainly summarized the research progress of polymeric non-covalent dispersants dispersed CNTs, introduced the principle of non-covalent dispersant dispersed CNTs, classified and analyzed the characteristics of dispersion of CNTs in solution and polymer melt. Finally, the research direction of non-covalent dispersants for dispersing CNTs in solution and the design idea of non-covalent dispersants for dispersing CNTs in polymer melt were prospected to expand the application of CNTs in the industrial field.
Key words:  carbon nanotubes    dispersion mechanism    non-covalent chemical modification    polymeric dispersant
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TQ314  
基金资助: 上海交通大学新进教师启动项目(18X100040063)
通讯作者:  *汪羽翎,上海交通大学化学化工学院助理研究员。2009年本科毕业于上海交通大学化学化工学院,2015年博士毕业于上海交通大学化学化工学院,师从于颜德岳院士与周永丰教授。2018年博士后工作出站留校工作至今。目前主要从事功能性超支化聚合物的设计、合成与应用,以及聚合物加工等方面的研究工作,积累了丰富的化学、材料学以及计算机模拟领域的知识。相关研究成果发表于Soft Matter,Chem.Asian J.、《高分子学报》、Angew.Chem.Int.Ed.、Macromol.Rapid Commun.、Phys.Chem.Chem.Phys.等主流学术期刊。wyl2005@sjtu.edu.cn   
作者简介:  陈点,2017年6月于同济大学获得工学学士学位。现为上海交通大学化学化工学院硕士研究生,在周永丰教授与汪羽翎老师的指导下进行研究。目前主要研究领域为碳纳米管分散剂的设计、合成及其工业化应用。
引用本文:    
陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
CHEN Dian, LYU Shiming, WANG Yuling. Dispersion and Mechanism of Non-covalent Chemically Modified Carbon Nanotubes. Materials Reports, 2023, 37(17): 22040300-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040300  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22040300
1 Iijima S. Nature, 1991, 354(6348), 56.
2 Valentini L, Kenny J M. Polymer, 2005, 46(17), 6715.
3 Stranks S D, Weisspfennig C, Parkinson P, et al. Nano Letters, 2011, 11(1), 66.
4 Staii C, Johnson A T, Chen M, et al. Nano Letters, 2005, 5(9), 1774.
5 Johnson A T C, Staii C, Chen M, et al. Semiconductor Science and Technology, 2006, 21(11), S17.
6 Liu Z, Davis C, Cai W, et al. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5), 1410.
7 Andersen A J, Robinson J T, Dai H, et al. ACS Nano, 2013, 7(2), 1108.
8 Antiohos D, Folkes G, Sherrell P, et al. Journal of Materials Chemistry, 2011, 21(40), 15987.
9 Boul P J, Liu J, Mickelson E T, et al. Chemical Physics Letters, 1999, 310(3-4), 367.
10 Liu J, Casavant M J, Cox M, et al. Chemical Physics Letters, 1999, 303(1-2), 125.
11 Fujigaya T, Nakashima N. Science and Technology of Advanced Materials, 2015, 16(2), 024802.
12 Banerjee J, Dutta K. Polymer Composites, 2019, 40(12), 4473.
13 Rumpf H C H. Chemie Ingenieur Technik, 1970, 42(8), 538.
14 Ottino J M, Deroussel P, Hansen S, et al. Advances in Chemical Engineering:Volume 25, Northwestern University Evanston Press, 1999, pp. 105.
15 Alig I, Pötschke P, Lellinger D, et al. Polymer, 2012, 53(1), 4.
16 Coleman J N, Curran S, Dalton A B, et al. Physical Review B, 1998, 58(12), R7492.
17 Panhuis M I H, Maiti A, Dalton A B, et al. Journal of Physical Chemistry B, 2003, 107(2), 478.
18 Keogh S M, Hedderman T G, Rüther M G, et al. Journal of Physical Chemistry B, 2005, 109(12), 5600.
19 Keogh S M, Hedderman T G, Lynch P, et al. Journal of Physical Che-mistry B, 2006, 110(39), 19369.
20 Adrian N, Jeong-Yuan H, James D, et al. Nature Nanotechnology, 2007, 2(10), 640.
21 Ozawa H, Fujigaya T, Niidome Y, et al. Journal of the American Chemical Society, 2011, 133(8), 2651.
22 Fukumaru T, Toshimitsu F, Fujigayaab T, et al. Nanoscale, 2014, 6(11), 5879.
23 Akazaki K, Toshimitsu F, Ozawa H, et al. Journal of the American Chemical Society, 2012, 134(30), 12700.
24 Bar-Hen A, Bounioux C, Yerushalmi-Rozen R, et al. Journal of Colloid and Interface Science, 2015, 452, 62.
25 Cataldo S, Salice P, Menna E, et al. Energy & Environmental Science, 2012, 5(3), 5919.
26 Zaminpayma E, Mirabbaszadeh K. Polymer Composites, 2012, 33(4), 548.
27 Goutam P J, Singh D K, Giri P K, et al. The Journal of Physical Che-mistry B, 2011, 115(5), 919.
28 Pradhan B, Batabyal S K, Pal A J. Journal of Physical Chemistry B, 2006, 110, 8274.
29 Min S H, Kim H I, Kim K S, et al. Polymer, 2016, 96, 63.
30 Farrell T, Wang K, Lin C W, et al. Polymer, 2017, 129, 1.
31 Ma J, Nan X, Liu J, et al. Materials Today Communications, 2018, 14, 99.
32 Oueiny C, Berlioz S, Perrin F X. Progress in Polymer Science, 2014, 39(4), 707.
33 Yoo J, Fujigaya T, Nakashima N. Nanoscale, 2013, 5(16), 7419.
34 Yoo J, Ozawa H, Fujigaya T, et al. Nanoscale, 2011, 3(6), 2517.
35 Shigeta M, Komatsu M, Nakashima N. Chemical Physics Letters, 2006, 418(1-3), 115.
36 Okamoto M, Fujigaya T, Nakashima N. Advanced Functional Materials, 2008, 18(12), 1776.
37 Okamoto M, Fujigaya T, Nakashima N. Small, 2009, 5(6), 735.
38 Fujigaya T, Okamoto M, Nakashima N. Carbon, 2009, 47(14), 3227.
39 Fukumaru T, Fujigaya T, Nakashima N. Macromolecules, 2013, 46(10), 4034.
40 Wang Y, Liu M, Liu T, et al. Composites Science and Technology, 2017, 143, 82.
41 Zhang X, Liu T, Sreekumar T V, et al. Nano Letters, 2003, 3(9), 1285.
42 O’connell M J, Boul P, Ericson L M, et al. Chemical Physics Letters, 2001, 342, 265.
43 Dai W, Wang J, Gan X, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 589, 124369.
44 Baskaran D, Mays J W, Bratcher M S. Chemistry of Materials, 2005, 17, 3389.
45 Naito M, Nobusawa K, Onouchi H, et al. Journal of the American Che-mical Society, 2008, 130, 16697.
46 Dalcanale F, Grossenbacher J, Blugan G, et al. Journal of Colloid and Interface Science, 2016, 470, 123.
47 Li C Y, Li L, Cai W, et al. Advanced Materials, 2005, 17(9), 1198.
48 Wu Z, Wang H, Xue M, et al. Composites Science and Technology, 2015, 114, 50.
49 Leubner S, Katsukis G, Guldi D M. Faraday Discuss, 2012, 155, 253.
50 Arribas A S, Moreno M, González L, et al. Journal of Electroanalytical Chemistry, 2020, 857, 113750.
51 Yang D Q, Rochette J F, Sacher E. Journal of Physical Chemistry B, 2005, 109, 4481.
52 Petrov P, Stassin F, Pagnoullea C, et al. Chemical Communications, 2003, (23), 2904.
53 Ogoshi T, Takashima Y, Yamaguchi H, et al. Journal of the American Chemical Society, 2007, 129, 4878.
54 Un M, Teme G. European Polymer Journal, 2018, 105, 398.
55 Guldi D M, Taieb H, Rahman G M A, et al. Advanced Materials, 2005, 17(7), 871.
56 Murakami H, Nakamura G, Nomura T, et al. Journal of Porphyrins and Phthalocyanines, 2007, 11, 418.
57 Deng Z, Yu H, Wang L, et al. Journal of Organometallic Chemistry, 2015, 791, 274.
58 Zhang N, Zhou D, Zhou N, et al. Reactive and Functional Polymers, 2017, 113, 85.
59 Salzmann C G, Ward M A H, Jacobs R M J, et al. Journal of Physical Chemistry C, 2007, 111, 18520.
60 Lovell C S, Wise K E, Kim J W, et al. Polymer, 2009, 50(8), 1925.
61 Wang Y, Ji W, Xu Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 608, 125557.
62 Kang Y, Taton T A. Journal of the American Chemical Society, 2003, 125, 5650.
63 Shin H I, Min B G, Jeong W, et al. Macromolecular Rapid Communications, 2005, 26(18), 1451.
64 Mountrichas G, Tagmatarchis N, Pispas S. Journal of Physical Chemistry B, 2007, 111, 8369.
65 Wang Z, Liu Q, Zhu H, et al. Carbon, 2007, 45(2), 285.
66 Xie H, Ortiz-Acevedo A, Zorbas V, et al. Journal of Materials Chemistry, 2005, 15, 1734.
67 Karajanagi S S, Yang H, Asuri P, et al. Langmuir, 2006, 22, 1392.
68 Karajanagi S S, Vertegel A A, Kane R S, et al. Langmuir, 2004, 20, 11594.
69 Giosia M D, Valle F, Cantelli A, et al. Carbon, 2019, 147, 70.
70 Teruo T, Romeo L C, Katsumi U, et al. Chemistry Letters, 2005, 34(11), 1516.
71 Zaremba O, Goldt A, Ramirez-Morales M, et al. Carbon, 2019, 151, 175.
72 Naqvi S T R, Rasheed T, Hussain D, et al. Journal of Molecular Liquids, 2020, 297, 111919.
73 Salamanca-Neto C A R, Olean-Oliveira A, Scremin J, et al. Talanta, 2020, 210, 120642.
74 Qiao L, Li Y, Liu Y, et al. Journal of Chromatography A, 2020, 1634, 461659.
75 Feng X, Wang X, Zhang C, et al. Carbon, 2021, 183, 187.
76 Ismail N H, Akindoyo J O, Mariatti M. Composites Part A:Applied Science and Manufacturing, 2020, 139, 106091.
77 Teruo T, Katsunori T, Hirofumi Y, et al. Chemistry Letters, 2002, 31(7), 690.
78 Kim O K, Je J, Baldwin J W, et al. Journal of the American Chemical Society, 2003, 125, 4426.
79 Numata M, Asai M, Kaneko K, et al. Journal of the American Chemical Society, 2005, 127, 5875.
80 Ji S, Liu W, Su S, et al. LWT-Food Science and Technology, 2021, 149, 111897.
81 Minami N, Kim Y, Miyashita K, et al. Applied Physics Letters, 2006, 88, 093123.
82 Li X, Fan Y, Watari F. Biomedical Materials, 2010, 5, 22001.
83 Sada T, Fujigaya T, Niidome Y, et al. ACS Nano, 2011, 5(6), 4414.
84 Yang Q, Li X, Zhang L, et al. Journal of Molecular Liquids, 2019, 279, 361.
85 Abreu B, Pires A S, Guimarães A, et al. Journal of Molecular Liquids, 2022, 347, 118338.
86 Lee M, Son K, Kim J, et al. Composites Science and Technology, 2018, 164, 260.
87 Shi Y, He L, Chen D, et al. Composites Part A:Applied Science and Manufacturing, 2020, 137, 106037.
88 Luo J, Cerretti G, Krause B, et al. Polymer, 2017, 108, 513.
89 Krause B, Barbier C, Kunz K, et al. Polymer, 2018, 159, 75.
90 Müller M T, Krause B, Pötschke P. Polymer, 2012, 53, 3079.
91 Müller M T, Pötschke P, Voit B. Polymer, 2015, 66, 210.
92 Al-Saleh M H, Al-Saidi B A, Al-Zoubi R M. Polymer, 2016, 89, 12.
93 Silva J P S D, Soares B G, Livi S, et al. Materials Chemistry and Physics, 2017, 189, 162.
94 Santos S C S M D, Soares B G, Pereira E C L, et al. Materials Chemistry and Physics, 2022, 280, 125853.
95 Kang S, Kim J, Park J H, et al. Composites Part B:Engineering, 2020, 198, 108204.
96 Wang Y, Yang C, Xin Z, et al. Composites Communications, 2022, 30, 101087.
97 Sanusi O M, Benelfellah A, Hocinea N A. Applied Clay Science, 2020, 185, 105408.
98 Sanusi O M, Benelfellah A, Terzopoulou Z, et al. Materials Today:Proceedings, 2021, 47, 3247.
99 Abrisham M, Panahi-Sarmad M, Sadeghi G M M, et al. Polymer Testing, 2020, 89, 106642.
100 Sanusi O M, Benelfellah A, Papadopoulos L, et al. Applied Clay Science, 2021, 201, 105925.
101 Faraguna F, Pötschke P, Pionteck J. Polymer, 2017, 132, 325.
102 Kim H S, Kim J H, Yang C M, et al. Journal of Alloys and Compounds, 2017, 690, 274.
103 Jang J U, Lee H S, Kim J W, et al. Chemical Engineering Journal, 2019, 373, 251.
[1] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[2] 夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
[3] 朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
[4] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[5] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[6] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[7] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[8] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[9] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[10] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[11] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[12] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[13] 王延杰, 赵世界, 盛俊杰, 汝杰, 赵春, 李树勇. MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究[J]. 材料导报, 2022, 36(20): 21060183-9.
[14] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[15] 吕颖, 胡永琴, 厚琛, 张超, 刘玉菲. 丙烯酸/丙烯酰胺/碳纳米管复合水凝胶及其传感性能研究[J]. 材料导报, 2022, 36(12): 21030154-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed