Dispersion and Mechanism of Non-covalent Chemically Modified Carbon Nanotubes
CHEN Dian1, LYU Shiming2, WANG Yuling1,*
1 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 Suzhou Sunmun Technology Co., Ltd., Kunshan 215337, Jiangsu, China
Abstract: Carbon nanotubes (CNTs) are one of the most representative nanomaterials with excellent performance. Their unique structure combined with their excellent mechanical, electronic and optical properties make them ideal nanomaterials, which are widely used in various fields. However, CNTs have huge surface area and aspect ratio, extremely strong van der Waals forces and π-π accumulation between tubes, which usually exist in the form of parallel tube bundles in the natural state, which greatly hinder the further research and application of CNTs. In recent years, based on the principle of non-covalent chemical modification, people have continuously studied the synthesis of appropriate dispersants for CNTs, explored the mechanism of CNTs dispersion, and attempted to solve the problem of CNTs agglomeration. However, in the field of actual industrial application, the existing scientific research results cannot meet the industrial demand for the dispersion of CNTs. This paper mainly summarized the research progress of polymeric non-covalent dispersants dispersed CNTs, introduced the principle of non-covalent dispersant dispersed CNTs, classified and analyzed the characteristics of dispersion of CNTs in solution and polymer melt. Finally, the research direction of non-covalent dispersants for dispersing CNTs in solution and the design idea of non-covalent dispersants for dispersing CNTs in polymer melt were prospected to expand the application of CNTs in the industrial field.
1 Iijima S. Nature, 1991, 354(6348), 56. 2 Valentini L, Kenny J M. Polymer, 2005, 46(17), 6715. 3 Stranks S D, Weisspfennig C, Parkinson P, et al. Nano Letters, 2011, 11(1), 66. 4 Staii C, Johnson A T, Chen M, et al. Nano Letters, 2005, 5(9), 1774. 5 Johnson A T C, Staii C, Chen M, et al. Semiconductor Science and Technology, 2006, 21(11), S17. 6 Liu Z, Davis C, Cai W, et al. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5), 1410. 7 Andersen A J, Robinson J T, Dai H, et al. ACS Nano, 2013, 7(2), 1108. 8 Antiohos D, Folkes G, Sherrell P, et al. Journal of Materials Chemistry, 2011, 21(40), 15987. 9 Boul P J, Liu J, Mickelson E T, et al. Chemical Physics Letters, 1999, 310(3-4), 367. 10 Liu J, Casavant M J, Cox M, et al. Chemical Physics Letters, 1999, 303(1-2), 125. 11 Fujigaya T, Nakashima N. Science and Technology of Advanced Materials, 2015, 16(2), 024802. 12 Banerjee J, Dutta K. Polymer Composites, 2019, 40(12), 4473. 13 Rumpf H C H. Chemie Ingenieur Technik, 1970, 42(8), 538. 14 Ottino J M, Deroussel P, Hansen S, et al. Advances in Chemical Engineering:Volume 25, Northwestern University Evanston Press, 1999, pp. 105. 15 Alig I, Pötschke P, Lellinger D, et al. Polymer, 2012, 53(1), 4. 16 Coleman J N, Curran S, Dalton A B, et al. Physical Review B, 1998, 58(12), R7492. 17 Panhuis M I H, Maiti A, Dalton A B, et al. Journal of Physical Chemistry B, 2003, 107(2), 478. 18 Keogh S M, Hedderman T G, Rüther M G, et al. Journal of Physical Chemistry B, 2005, 109(12), 5600. 19 Keogh S M, Hedderman T G, Lynch P, et al. Journal of Physical Che-mistry B, 2006, 110(39), 19369. 20 Adrian N, Jeong-Yuan H, James D, et al. Nature Nanotechnology, 2007, 2(10), 640. 21 Ozawa H, Fujigaya T, Niidome Y, et al. Journal of the American Chemical Society, 2011, 133(8), 2651. 22 Fukumaru T, Toshimitsu F, Fujigayaab T, et al. Nanoscale, 2014, 6(11), 5879. 23 Akazaki K, Toshimitsu F, Ozawa H, et al. Journal of the American Chemical Society, 2012, 134(30), 12700. 24 Bar-Hen A, Bounioux C, Yerushalmi-Rozen R, et al. Journal of Colloid and Interface Science, 2015, 452, 62. 25 Cataldo S, Salice P, Menna E, et al. Energy & Environmental Science, 2012, 5(3), 5919. 26 Zaminpayma E, Mirabbaszadeh K. Polymer Composites, 2012, 33(4), 548. 27 Goutam P J, Singh D K, Giri P K, et al. The Journal of Physical Che-mistry B, 2011, 115(5), 919. 28 Pradhan B, Batabyal S K, Pal A J. Journal of Physical Chemistry B, 2006, 110, 8274. 29 Min S H, Kim H I, Kim K S, et al. Polymer, 2016, 96, 63. 30 Farrell T, Wang K, Lin C W, et al. Polymer, 2017, 129, 1. 31 Ma J, Nan X, Liu J, et al. Materials Today Communications, 2018, 14, 99. 32 Oueiny C, Berlioz S, Perrin F X. Progress in Polymer Science, 2014, 39(4), 707. 33 Yoo J, Fujigaya T, Nakashima N. Nanoscale, 2013, 5(16), 7419. 34 Yoo J, Ozawa H, Fujigaya T, et al. Nanoscale, 2011, 3(6), 2517. 35 Shigeta M, Komatsu M, Nakashima N. Chemical Physics Letters, 2006, 418(1-3), 115. 36 Okamoto M, Fujigaya T, Nakashima N. Advanced Functional Materials, 2008, 18(12), 1776. 37 Okamoto M, Fujigaya T, Nakashima N. Small, 2009, 5(6), 735. 38 Fujigaya T, Okamoto M, Nakashima N. Carbon, 2009, 47(14), 3227. 39 Fukumaru T, Fujigaya T, Nakashima N. Macromolecules, 2013, 46(10), 4034. 40 Wang Y, Liu M, Liu T, et al. Composites Science and Technology, 2017, 143, 82. 41 Zhang X, Liu T, Sreekumar T V, et al. Nano Letters, 2003, 3(9), 1285. 42 O’connell M J, Boul P, Ericson L M, et al. Chemical Physics Letters, 2001, 342, 265. 43 Dai W, Wang J, Gan X, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 589, 124369. 44 Baskaran D, Mays J W, Bratcher M S. Chemistry of Materials, 2005, 17, 3389. 45 Naito M, Nobusawa K, Onouchi H, et al. Journal of the American Che-mical Society, 2008, 130, 16697. 46 Dalcanale F, Grossenbacher J, Blugan G, et al. Journal of Colloid and Interface Science, 2016, 470, 123. 47 Li C Y, Li L, Cai W, et al. Advanced Materials, 2005, 17(9), 1198. 48 Wu Z, Wang H, Xue M, et al. Composites Science and Technology, 2015, 114, 50. 49 Leubner S, Katsukis G, Guldi D M. Faraday Discuss, 2012, 155, 253. 50 Arribas A S, Moreno M, González L, et al. Journal of Electroanalytical Chemistry, 2020, 857, 113750. 51 Yang D Q, Rochette J F, Sacher E. Journal of Physical Chemistry B, 2005, 109, 4481. 52 Petrov P, Stassin F, Pagnoullea C, et al. Chemical Communications, 2003, (23), 2904. 53 Ogoshi T, Takashima Y, Yamaguchi H, et al. Journal of the American Chemical Society, 2007, 129, 4878. 54 Un M, Teme G. European Polymer Journal, 2018, 105, 398. 55 Guldi D M, Taieb H, Rahman G M A, et al. Advanced Materials, 2005, 17(7), 871. 56 Murakami H, Nakamura G, Nomura T, et al. Journal of Porphyrins and Phthalocyanines, 2007, 11, 418. 57 Deng Z, Yu H, Wang L, et al. Journal of Organometallic Chemistry, 2015, 791, 274. 58 Zhang N, Zhou D, Zhou N, et al. Reactive and Functional Polymers, 2017, 113, 85. 59 Salzmann C G, Ward M A H, Jacobs R M J, et al. Journal of Physical Chemistry C, 2007, 111, 18520. 60 Lovell C S, Wise K E, Kim J W, et al. Polymer, 2009, 50(8), 1925. 61 Wang Y, Ji W, Xu Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 608, 125557. 62 Kang Y, Taton T A. Journal of the American Chemical Society, 2003, 125, 5650. 63 Shin H I, Min B G, Jeong W, et al. Macromolecular Rapid Communications, 2005, 26(18), 1451. 64 Mountrichas G, Tagmatarchis N, Pispas S. Journal of Physical Chemistry B, 2007, 111, 8369. 65 Wang Z, Liu Q, Zhu H, et al. Carbon, 2007, 45(2), 285. 66 Xie H, Ortiz-Acevedo A, Zorbas V, et al. Journal of Materials Chemistry, 2005, 15, 1734. 67 Karajanagi S S, Yang H, Asuri P, et al. Langmuir, 2006, 22, 1392. 68 Karajanagi S S, Vertegel A A, Kane R S, et al. Langmuir, 2004, 20, 11594. 69 Giosia M D, Valle F, Cantelli A, et al. Carbon, 2019, 147, 70. 70 Teruo T, Romeo L C, Katsumi U, et al. Chemistry Letters, 2005, 34(11), 1516. 71 Zaremba O, Goldt A, Ramirez-Morales M, et al. Carbon, 2019, 151, 175. 72 Naqvi S T R, Rasheed T, Hussain D, et al. Journal of Molecular Liquids, 2020, 297, 111919. 73 Salamanca-Neto C A R, Olean-Oliveira A, Scremin J, et al. Talanta, 2020, 210, 120642. 74 Qiao L, Li Y, Liu Y, et al. Journal of Chromatography A, 2020, 1634, 461659. 75 Feng X, Wang X, Zhang C, et al. Carbon, 2021, 183, 187. 76 Ismail N H, Akindoyo J O, Mariatti M. Composites Part A:Applied Science and Manufacturing, 2020, 139, 106091. 77 Teruo T, Katsunori T, Hirofumi Y, et al. Chemistry Letters, 2002, 31(7), 690. 78 Kim O K, Je J, Baldwin J W, et al. Journal of the American Chemical Society, 2003, 125, 4426. 79 Numata M, Asai M, Kaneko K, et al. Journal of the American Chemical Society, 2005, 127, 5875. 80 Ji S, Liu W, Su S, et al. LWT-Food Science and Technology, 2021, 149, 111897. 81 Minami N, Kim Y, Miyashita K, et al. Applied Physics Letters, 2006, 88, 093123. 82 Li X, Fan Y, Watari F. Biomedical Materials, 2010, 5, 22001. 83 Sada T, Fujigaya T, Niidome Y, et al. ACS Nano, 2011, 5(6), 4414. 84 Yang Q, Li X, Zhang L, et al. Journal of Molecular Liquids, 2019, 279, 361. 85 Abreu B, Pires A S, Guimarães A, et al. Journal of Molecular Liquids, 2022, 347, 118338. 86 Lee M, Son K, Kim J, et al. Composites Science and Technology, 2018, 164, 260. 87 Shi Y, He L, Chen D, et al. Composites Part A:Applied Science and Manufacturing, 2020, 137, 106037. 88 Luo J, Cerretti G, Krause B, et al. Polymer, 2017, 108, 513. 89 Krause B, Barbier C, Kunz K, et al. Polymer, 2018, 159, 75. 90 Müller M T, Krause B, Pötschke P. Polymer, 2012, 53, 3079. 91 Müller M T, Pötschke P, Voit B. Polymer, 2015, 66, 210. 92 Al-Saleh M H, Al-Saidi B A, Al-Zoubi R M. Polymer, 2016, 89, 12. 93 Silva J P S D, Soares B G, Livi S, et al. Materials Chemistry and Physics, 2017, 189, 162. 94 Santos S C S M D, Soares B G, Pereira E C L, et al. Materials Chemistry and Physics, 2022, 280, 125853. 95 Kang S, Kim J, Park J H, et al. Composites Part B:Engineering, 2020, 198, 108204. 96 Wang Y, Yang C, Xin Z, et al. Composites Communications, 2022, 30, 101087. 97 Sanusi O M, Benelfellah A, Hocinea N A. Applied Clay Science, 2020, 185, 105408. 98 Sanusi O M, Benelfellah A, Terzopoulou Z, et al. Materials Today:Proceedings, 2021, 47, 3247. 99 Abrisham M, Panahi-Sarmad M, Sadeghi G M M, et al. Polymer Testing, 2020, 89, 106642. 100 Sanusi O M, Benelfellah A, Papadopoulos L, et al. Applied Clay Science, 2021, 201, 105925. 101 Faraguna F, Pötschke P, Pionteck J. Polymer, 2017, 132, 325. 102 Kim H S, Kim J H, Yang C M, et al. Journal of Alloys and Compounds, 2017, 690, 274. 103 Jang J U, Lee H S, Kim J W, et al. Chemical Engineering Journal, 2019, 373, 251.