Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22100141-6    https://doi.org/10.11896/cldb.22100141
  金属与金属基复合材料 |
泡沫Ni/In-48Sn复合焊料钎焊Al合金接头显微结构及力学性能研究
陈该青1, 刘凯2, 徐幸1, 吴瑛1, 肖勇2,*
1 中国电子科技集团公司第三十八研究所,合肥 230088
2 武汉理工大学材料科学与工程学院,武汉 430070
Microstructure and Mechanical Properties of Al Alloy Joint Soldered with Ni Foam/In-48Sn Composite Solder
CHEN Gaiqing1, LIU Kai2, XU Xing1, WU Ying1, XIAO Yong2,*
1 The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 16064KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 In-48Sn共晶焊料具有熔点低、延展性高、润湿性好等优点,在微波、通信等功能组件的钎焊连接中具有广泛应用。然而,In-48Sn共晶焊料力学性能较差,已难满足新一代功能组件的载荷要求。采用微合金化及微纳米颗粒、纤维强化等方法可在一定程度上提高焊料的强度,但钎焊接头的强度提升效果有限。基于此,本工作采用真空浸渗工艺制备了泡沫Ni强化In-48Sn复合焊料,并采用该复合焊料对表面含Ag镀层的Al合金进行了低温钎焊连接,重点研究了泡沫Ni孔隙率和钎焊时间对接头显微结构及力学性能的影响。研究结果表明,Al合金表面形成了Ag2In金属间化合物(IMC)层,其随钎焊时间延长不断增厚,且在无Ni骨架阻挡时易向焊缝中生长形成块状结构。In-48Sn焊料与泡沫Ni骨架反应形成了(Ni,Cu)3-(In,Sn)7相,延长钎焊时间、减小泡沫Ni孔隙度均会促进该反应相的形成并加快In基焊料的消耗,最终焊缝完全由Ni骨架和IMCs组成,而钎焊接头的剪切强度也相应增加。采用50%Ni-In48Sn复合焊料钎焊120 min时接头剪切强度达到了34.34 MPa,相比In-48Sn共晶焊料钎焊接头提升了335.2%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈该青
刘凯
徐幸
吴瑛
肖勇
关键词:  泡沫Ni  In-48Sn焊料  Al合金接头  显微结构  力学性能    
Abstract: In-48Sn eutectic solder has the advantages of low melting point, high ductility, and good wettability, and is widely used in the soldering of microwave, communication, and other functional components. However, the mechanical properties of In-48Sn eutectic solder are poor, which made it difficult to meet the load requirements of the latest functional components. By adding trace alloys, nano-sized particles or fibers into In-Sn solders could improve the strength of them to a certain extent, but the strength improvements of joints using these solders were limited. Based on these, we prepared Ni foam strengthened In-48Sn composite solders by vacuum infiltration process, then using the as-fabricated composite sol-ders to join Ag coated Al alloy at low temperature. Effects of Ni foam porosity and soldering time on the microstructure and mechanical properties of the joints were studied. Results showed that the Ag2In intermetallic compound (IMC) layer formed on the Al alloy surface, the thickness of which increased with prolonging soldering time; moreover, the Ag2In phase tended to form a block structure in the solder seam when there were no Ni skeleton barriers. A (Ni, Cu)3(In, Sn)7 phase formed during the reaction between In-48Sn solder and Ni skeletons. Prolonging the soldering time and reducing the porosity of Ni foams could both promote the formation of reaction phases and accelerate the consumption of In-48Sn solder, accompanied by the shear strength improvements of the joints. Finally, the soldering seam was completely composed of Ni skeleton and IMCs. The joint soldered with 50%Ni-In48Sn composite solder for 120 min obtained a shear strength of 34.34 MPa, which was 335.2% higher than that soldered with In-48Sn eutectic solder.
Key words:  Ni foam    In-48Sn solder    Al alloy joint    microstructure    mechanical property
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TG425  
基金资助: JCJQ计划项目(2020-JCJQ-JJ-088);装备预研领域基金(80922020602)
通讯作者:  *肖勇,博士、副教授、博士研究生导师,2014年于哈尔滨工业大学(深圳)取得博士学位,谢菲尔德大学资助研究员(Sir SY Chung Fellowship)。主要研究方向为新型钎焊材料、新材料特种连接技术、电子装联技术等。近年来承担国家自然科学基金、装备预研领域基金、JPPT、企事业单位委托课题等项目20余项,相关成果获广东省科技进步二等奖。近年来在Carbon、Ultrasonics Sonochemistry、Materials Science and Engineering A、《材料导报》等期刊发表学术论文40余篇;授权发明专利10余项(已转化2项)。yongxiao@whut.edu.cn   
作者简介:  陈该青,2005年7月于哈尔滨工业大学获得工学学士学位。现为中国电子科技集团公司第三十八研究所高级工程师。目前主要研究领域为电子装联材料与工艺。
引用本文:    
陈该青, 刘凯, 徐幸, 吴瑛, 肖勇. 泡沫Ni/In-48Sn复合焊料钎焊Al合金接头显微结构及力学性能研究[J]. 材料导报, 2023, 37(17): 22100141-6.
CHEN Gaiqing, LIU Kai, XU Xing, WU Ying, XIAO Yong. Microstructure and Mechanical Properties of Al Alloy Joint Soldered with Ni Foam/In-48Sn Composite Solder. Materials Reports, 2023, 37(17): 22100141-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100141  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22100141
1 Zhou J H, Dong Y Z. Automobile Applied Technology, 2019(7), 200 (in Chinese).
周精浩, 董焱章. 汽车实用技术, 2019(7), 200.
2 Sommadossi S, Litynska L, Zieba P, et al. Materials Chemistry and Physics, 2003, 81(2-3), 566.
3 Lin S K, Chang R B, Chen S W, et al. Materials Chemistry and Physics, 2015, 154, 60.
4 Wu Y, Zhong J F, Zhang D M. Electro-Mechanical Engineering, 2005, 21(1), 44 (in Chinese).
吴迤, 钟剑锋, 张德明. 电子机械工程, 2005, 21(1), 44.
5 Le H, Shen Y, Jin S, et al. Journal of Materials Science, 2020, 55(24), 10824.
6 Yang L, Yang Y, Zhang Y C, et al. Applied Physics A-Materials Science & Processing, 2020, 126(5), 1.
7 Wang J, Mao D, Shi L, et al. Journal of Electronic Materials, 2019, 48(2), 817.
8 LuoX, Peng J C, Zanden C, et al. Acta Materialia, 2016, 104, 109.
9 Chang S Y, Jain C, Chuang T, et al. Materials & Design, 2011, 32(10), 4720.
10 Basista M, Jakubowska J, Glewski W W. Advanced Engineering Materials, 2017, 19(12), 14.
11 Chang H, Higginson R, Binner J. Journal of Materials Science, 2010, 45(3), 662.
12 Zhao L Z, Zhao M J, Na L, et al. Transactions of Nonferrous Metals So-ciety of China, 2010, 20, s463.
13 Zaharinie T, Moshwan R, Yusof F, et al. Materials & Design, 2014, 54, 375.
14 Ho C E, Lu M K, Lee P T, et al. Materials Science and Engineering:A, 2017, 706, 269.
15 Kai L, Jiaqi L, Jian Z, et al. The Journal of Materials Science:Materials in Electronics, 2022, 33, 12594.
16 Peng F, Liu W, Ma Y, et al. Soldering & Surface Mount Technology, 2019, 31(1), 1.
17 Jong S K, Pin J W, Chin C L. IEEE Transactions on Components and Packing Technologies, 2008, 31, 4.
18 Edyta Matyja, Krystian Prusik, Maciej Zubko, et al. Journal of Alloys and Compounds, 2019, 801, 529.
19 He S, Huang S, Ye Y, et al. Journal of Alloys and Compounds, 2020, 845, 156240.
20 Ho C E, Tsai R, Lin Y, et al. Journal of Electronic Materials, 2002, 31, 584.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[12] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[13] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[14] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[15] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed