Progress in Carbon Nanomaterials for Lithium-ion Batteries
ZHANG Bailun1, WANG Kai1, LI Jiahui1, ZHONG Haichang2, ZHANG Wenkui1, ZHANG Wenxian2, LIANG Chu1,2,*
1 College of Materials Science and Engineering & Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China 2 Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen 361024, Fujian, China
Abstract: As one of the most promising energy storage devices, lithium-ion batteries have been widely used in portable electronic devices. However, the inadequate energy density and power density, poor durability and high cost, which are resulted from using traditional electrode materials, limit the large-scale applications of lithium-ion batteries in electric vehicles. The development of carbon nanomaterials provides an opportunity for the new energy storage materials applied in lithium-ion batteries. Nanocarbons have many unique characteristics, including unique morphology and microstructure, high specific surface area, low diffusion distance, high electronic and ionic conductivity, controllable synthesis and doping, etc. Therefore, nanocarbons have great application prospects in the field of lithium-ion batteries with high reversible capacity, high power density, good cycle stability and high safety. However, nanocarbons as electrode materials exhibit low initial Coulombic efficiency and large voltage hysteresis during charging/discharging. Moreover, the electrochemical performance of nanocarbons is dependent on their morphology and microstructure. The following strategies are proposed to solve these problems: (Ⅰ) improving the electrochemical performance by adjusting the morphology and microstructure of nanocarbons; (Ⅱ) improving electrochemical performance by doping heteroatoms into nanocarbons; (Ⅲ) combining nanocarbons with other materials to form carbon-based composites for high-performance lithium storage. The recent progress of nanocarbon materials in lithium-ion batteries, typically represented by fullerene, graphene, carbon nanotubes and po-rous carbon is reviewed in this paper. The influence of nano-size and morphology on the electrochemical performance of nanocarbons is also summarized. The synthesis of nano-carbon, lithium-ion battery performance and electrode reaction mechanism are emphasized. The purpose of this paper is to summarize the recent progress of carbon nanomaterials in the lithium-ion batteries and their key fundamental problems to be solved in the future.
作者简介: 张佰伦,2018年6月毕业于井冈山大学,获得工学学士学位。现为浙江工业大学材料科学与工程学院硕士研究生,在梁初教授指导下从事碳材料的合成机理和储能应用研究。 梁初,浙江工业大学材料科学与工程学院&浙江碳中和创新研究院教授。2011年6月在浙江大学材料科学与工程学系取得博士学位,2011—2013年在浙江大学材料科学与工程学系从事博士后研究工作。2014入职浙江工业大学,其中2018—2019年前往美国马里兰大学帕克分校材料科学与工程学系进行访问交流。近年来,主要从事碳中和技术与新材料的基础理论和应用开发研究工作,在Nature Communications、Advanced Energy Materials、Small、Journal of Materials Chemistry A等期刊发表SCI学术论文110余篇。
引用本文:
张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
ZHANG Bailun, WANG Kai, LI Jiahui, ZHONG Haichang, ZHANG Wenkui, ZHANG Wenxian, LIANG Chu. Progress in Carbon Nanomaterials for Lithium-ion Batteries. Materials Reports, 2022, 36(20): 21050286-13.
1 Czernik S, Bridgwater A V. Energy & Fuels, 2004, 18(2), 590. 2 Sloan E D.Nature, 2003, 426(6964), 353. 3 Liang C, Pan L, Liang S, et al. Small, 2019, 15(33), 8. 4 Wang Y, Zhou L, Liang C, et al. New Journal of Chemistry, 2019, 43(10), 4123. 5 Liang C, Chen Y, Xu H, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 227. 6 Liang C, Chen Y, Wu M, et al. Nature Communications,2021,12(1),9. 7 Liang C, Gao M, Pan H, et al. Journal of Alloys and Compounds, 2013, 575, 246. 8 Liang C, Zhou C, Chen Z, et al. Ionics, 2018, 24(8), 2233. 9 Li M, Lu J, Chen Z W, et al. Advanced Materials, 2018, 30(33), 24. 10 Yang C Y, Chen J, Ji X, et al. Nature, 2019, 569(7755), 245. 11 Liu H D, Zhu Z Y, Yan Q Z, et al. Nature, 2020, 585(7823), 63. 12 Whittingham M S.Science, 1976, 192(4244), 1126. 13 Liang C, Liang S, Xia Y, et al. Journal of Materials Chemistry A, 2017, 5(34), 18221. 14 Pomerantseva E, Bonaccorso F, Feng X L, et al. Science, 2019, 366(6468), 969. 15 Wei Q L, Xiong F Y, Tan S S, et al. Advanced Materials, 2017, 29(20), 39. 16 Lu Y, Yu Y, Lou X W.Chem, 2018, 4(5), 972. 17 Zhu S, Li J J, Deng X Y, et al. Advanced Functional Materials, 2017, 27(9), 8. 18 Huang M, Mi K, Zhang J H, et al. Journal of Materials Chemistry A, 2017, 5(1), 266. 19 Kroto H W, Heath J R, O’brien S C, et al. Nature, 1985, 318(6042), 162. 20 Kratschmer W, Fostiropoulos K, Huffman D R.Chemical Physics Letters, 1990, 170(2-3), 167. 21 Yoshie K, Kasuya S, Eguchi K, et al. Applied Physics Letters, 1992, 61(23), 2782. 22 Chibante L P F, Thess A, Alford J M, et al. Journal of Physical Chemistry, 1993, 97(34), 8696. 23 Diederich F, Ettl R, Rubin Y, et al. Science, 1991, 252(5005), 548. 24 Inomata K, Aoki N, Koinuma H.Japanese Journal of Applied Physics Part 2-Letters, 1994, 33(2A), L197. 25 Howard J B, Mckinnon J T, Makarovsky Y, et al. Nature, 1991, 352(6331), 139. 26 Khan A J, Hanif M, Javed M S, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(9), 8568. 27 Koh W, Choi J I, Lee S G, et al. Carbon, 2011, 49(1), 286. 28 Shan C S, Yen H J, Wu K F, et al. Nano Energy, 2017, 40, 327. 29 Teprovich J A, Weeks J A, Ward P A, et al. ACS Applied Energy Mate-rials, 2019, 2(9), 6453. 30 Chen M, Guan R, Yang S.Advanced Science, 2019, 6(1), 1800941. 31 Dong Q, Ho C H Y, Yu H, et al. Chemistry of Materials, 2019, 31(17), 6833. 32 Li T, Dorn H C.Small, 2017, 13(8), 1603152. 33 Chabre Y, Djurado D, Armand M, et al. Journal of the American Chemical Society, 1992, 114(2), 764. 34 Yazami R, Cherigui A.Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals, 1994, 244, 209. 35 Forro L, Mihaly L.Reports on Progress in Physics, 2001, 64(5), 649. 36 Tan Z Q, Ni K, Chen G X, et al. Advanced Materials,2017,29(8),8. 37 Guan J, Zhong X, Chen X, et al. Nanoscale, 2018, 10(5), 2473. 38 Chen Y Q, Cho C R, Manzhos S.Materials, 2019, 12(13), 12. 39 Li Z, Wang S H, Cui J, et al. ACS Nano, 2020, 14(2), 1600. 40 Han J G, Hwang C, Kim S H, et al. Advanced Energy Materials, 2020, 10(20), 14. 41 Park J, Joo S H, Kim Y J, et al. Advanced Functional Materials, 2019, 29(32), 9. 42 Hudaya C, Halim M, Proll J, et al. Journal of Power Sources, 2015, 298, 1. 43 Iijima S.Nature, 1991, 354(6348), 56. 44 Lim H E, Miyata Y, Kitaura R, et al. Nature Communications, 2013, 4, 7. 45 Fang X Q, Shashurin A, Teel G, et al. Carbon, 2016, 107, 273. 46 Yang F, Wang X, Zhang D Q, et al. Nature, 2014, 510(7506), 522. 47 Krasheninnikov A V, Banhart F.Nature Materials, 2007, 6(10), 723. 48 Tang T, Chen X C, Meng X Y, et al. Angewandte Chemie-International Edition, 2005, 44(10), 1517. 49 Laplaze D, Bernier P, Maser W K, et al. Carbon, 1998, 36(5-6), 685. 50 Li J, Papadopoulos C, Xu J.Nature, 1999, 402(6759), 253. 51 Su Y, Zhang Y, Wei H, et al. Carbon, 2012, 50(7), 2556. 52 Alvarez W E, Kitiyanan B, Borgna A, et al. Carbon, 2001, 39(4), 547. 53 Liang S, Xia Y, Liang C, et al. Journal of Materials Chemistry A, 2018, 6(21), 9906. 54 Xia Y, Yu L, Lu C, et al. Journal of Alloys and Compounds, 2021, 859, 157806. 55 Eom J Y, Kwon H S, Liu J, et al. Carbon, 2004, 42(12-13), 2589. 56 Gao B, Bower C, Lorentzen J D, et al. Chemical Physics Letters, 2000, 327(1-2), 69. 57 Eom J, Kim D, Kwon H S.Journal of Power Sources, 2006, 157(1), 507. 58 Kar T, Pattanayak J, Scheiner S.Journal of Physical Chemistry A, 2001, 105(45), 10397. 59 Nishidate K, Hasegawa M.Physical Review B, 2005, 71(24), 245418. 60 Garau C, Frontera A, Quinonero D, et al. Chemical Physics Letters, 2003, 374(5-6), 548. 61 Zhao J, Buldum A, Han J, et al. Physical Review Letters, 2000, 85(8), 1706. 62 Deng Z N, Jiang H, Hu Y J, et al. Advanced Materials,2017,29(10),7. 63 Tabassum H, Zou R Q, Mahmood A, et al. Advanced Materials, 2018, 30(8), 7. 64 Kwon Y H, Minnici K, Park J J, et al. Journal of the American Chemical Society, 2018, 140(17), 5666. 65 Park C, Samuel E, Joshi B, et al. Chemical Engineering Journal, 2020, 395, 13. 66 Li J F, Han L, Zhang X L, et al. Chemical Engineering Journal, 2021, 406, 10. 67 Zhao Y T, Dong W J, Riaz M S, et al. ACS Applied Materials & Interfaces, 2018, 10(50), 43641. 68 Wu R B, Wang D P, Rui X H, et al. Advanced Materials, 2015, 27(19), 3038. 69 Jin D, Yang X F, Ou Y Q, et al. Science Bulletin, 2020, 65(6), 452. 70 Shen L, Dong Q C, Zhu G Y, et al. Advanced Materials Interfaces, 2018, 5(14), 7. 71 Lin C F, Hu L, Cheng C B, et al. Electrochimica Acta, 2018, 260, 65. 72 Cui X, Wang Y Q, Xu Q Y, et al. Nanotechnology,2017,28(25),10. 73 Sun H Y, Hanlon D, Dinh D A, et al. 2d Materials, 2018, 5(1), 10. 74 Zhang Z J, Zhao H L, Teng Y Q, et al. Advanced Energy Materials, 2018, 8(7), 11. 75 Peng Y T, Le Z Y, Wen M C, et al. Nano Energy, 2017, 35, 44. 76 Yao X, Guo G L, Li P Z, et al. ACS Applied Materials & Interfaces, 2017, 9(49), 42438. 77 Zhang H, Wang Y S, Zhao W Q, et al. ACS Applied Materials & Interfaces, 2017, 9(43), 37813. 78 Zhang Y P, Wang L L, Xu H, et al. Advanced Functional Materials, 2020, 30(12), 12. 79 Palacin M R, De Guibert A.Science, 2016, 351(6273), 7. 80 Hou T, Liu B, Sun X, et al. ACS Nano, 2021, 15(4), 6735. 81 Lin Z, Zeng Z, Gui X, et al. Advanced Energy Materials, 2016, 6(17), 1600554. 82 Sun X, Zhu X, Yang X, et al. Green Energy & Environment, 2017, 2(2), 160. 83 Liu T, Zhang M, Wang Y L, et al. Advanced Energy Materials, 2018, 8(30), 10. 84 Yuan C P, Wu Q, Shao Q, et al. Journal of Colloid And Interface Science, 2018, 517, 72. 85 Lee J, Lee D M, Jung Y, et al. Nature Communications, 2019, 10(1), 2962. 86 Zhang T, Han S, Guo W, et al. Sustainable Materials and Technologies, 2019, 20, e00096. 87 Geim A K, Novoselov K S.Nature Materials, 2007, 6(3), 183. 88 Khan U, O’neill A, Lotya M, et al. Small, 2010, 6(7), 864. 89 Emtsev K V, Bostwick A, Horn K, et al. Nature Materials, 2009, 8(3), 203. 90 Li X S, Cai W W, An J H, et al. Science, 2009, 324(5932), 1312. 91 Yi M, Shen Z G.Journal of Materials Chemistry A, 2015, 3(22), 11700. 92 Gao H Y, Zhu K X, Hu G X, et al. Chemical Engineering Journal, 2017, 308, 872. 93 Kim J, Park H, Hannon J B, et al. Science, 2013, 342(6160), 833. 94 Gao Z L, Zhang Q C, Naylor C H, et al. ACS Nano, 2018, 12(3), 2275. 95 Zhang C T F, Tu R, Zhang S, et al. Carbon, 2017, 122, 352. 96 Luong D X, Bets K V, Algozeeb W A, et al. Nature, 2020, 577(7792), 647. 97 Xia Y, Ren Q, Lu C, et al. Materials Research Bulletin, 2021, 135, 111129. 98 Bian F, Yu J, Song W, et al. Electrochimica Acta, 2020, 330, 135248. 99 Dahn J R, Zheng T, Liu Y H, et al. Science, 1995, 270(5236), 590. 100 Sato K, Noguchi M, Demachi A, et al. Science, 1994, 264(5158), 556. 101 Ji K M, Han J H, Hirata A, et al. Nature Communications,2019,10,10. 102 Kühne M, Borrnert F, Fecher S, et al. Nature, 2018, 564(7735), 234. 103 Yao F, Gunes F, Ta H Q, et al. Journal of the American Chemical Society, 2012, 134(20), 8646. 104 Choi D S, Kim C, Lim J, et al. Advanced Materials,2018,30(51),9. 105 Xu Q, Sun J K, Yu Z L, et al. Advanced Materials, 2018, 30(25), 6. 106 Jing M J, Zhou M J, Li G Y, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9662. 107 Sun L N, Deng Q W, Li Y L, et al. Electrochimica Acta, 2017, 241, 252. 108 Jiang T C, Bu F X, Feng X X, et al. ACS Nano, 2017, 11(5), 5140. 109 Wang B, Al Abdulla W, Wang D L, et al. Energy & Environmental Science, 2015, 8(3), 869. 110 Shi Y, Wang J Z, Chou S L, et al. Nano Letters, 2013, 13(10), 4715. 111 Zhang R, Wang D, Qin L C, et al. Journal of Materials Chemistry A, 2017, 5(32), 17001. 112 Sheng L Z, Liang S C, Wei T, et al. Energy Storage Materials, 2018, 12, 94. 113 Chen B, Meng Y H, He F, et al. Nano Energy, 2017, 41, 154. 114 Chen W H, Song K M, Mi L W, et al. Journal of Materials Chemistry A, 2017, 5(20), 10027. 115 Chang J B, Huang X K, Zhou G H, et al. Advanced Materials, 2014, 26(5), 758. 116 Ding S K, Cheng W, Zhang L M, et al. Journal of Colloid and Interface Science, 2021, 589, 308. 117 Li C, Zhao M, Sun C N, et al. Journal of Power Sources, 2018, 397, 162. 118 Kopuklu B B, Tasdemir A, Gursel S A, et al. Carbon, 2021, 174, 158. 119 Jiang Y Z, Li Y, Zhou P, et al. Advanced Materials,2017,29(48),8. 120 Wang H S, Li Y Z, Li Y B, et al. Nano Letters, 2019, 19(2), 1326. 121 Wang M Z, Tang M, Chen S L, et al. Advanced Materials, 2017, 29(47), 7. 122 Shi Y, Wen L, Zhou G M, et al. 2d Materials, 2015, 2(2), 8. 123 Mo R W, Rooney D, Sun K N, et al. Nature Communications, 2017, 8, 9. 124 Wang F, Wang H, Mao J.Journal of Materials Science, 2019, 54(1), 36. 125 Li Y, Wu F F, Jin X, et al. Inorganic Chemistry Communications, 2020, 112, 6. 126 Saroja A P V K, Garapati M S, Shyiamaladevi R, et al. Applied Surface Science, 2020, 504, 144430. 127 Jana R, Chowdhury C, Datta A.Chemsuschem, 2020, 13(15), 3855. 128 Chao D, Zhu C, Xia X, et al. Nano Letters, 2015, 15(1), 565. 129 Chen Y M, Hsu S T, Tseng Y H, et al. Small, 2018, 14(12), 1703571. 130 Zheng X H, Hu Q L, Zhou X S, et al. Materials & Design, 2021, 201, 16. 131 Gu M, Ko S, Yoo S, et al. Journal of Power Sources, 2015, 300, 351. 132 Zhang Y, Weng W, Yang J J, et al. Journal of Materials Science, 2019, 54(1), 582. 133 Wang K, Chen Y, Wang Y F, et al. Journal of Alloys and Compounds, 2020, 830, 8. 134 Jin C, Sheng O, Luo J, et al. Nano Energy, 2017, 37, 177. 135 Liang S, Liang C, Xia Y, et al. Journal of Power Sources, 2016, 306, 200. 136 Huang H, Yang G, Yu J, et al. Electrochimica Acta, 2021, 373, 137933. 137 Wan L, Chen D Q, Liu J X, et al. Journal of Alloys and Compounds, 2020, 823, 11. 138 Xia Y, Cai S, Lu C, et al. Journal of Alloys and Compounds, 2020, 816, 10. 139 Yek P N Y, Liew R K, Osma M S, et al. Journal of Environmental Management, 2019, 236, 245. 140 Zhao H W, Li L X, Liu Y Y, et al. Applied Surface Science, 2020, 504, 9. 141 Huang H, Cheng C, Liang S, et al. Carbon, 2018, 130, 559. 142 Wang K, Feng G, Liang C, et al. ACS Applied Energy Materials, 2018, 1(12), 7123. 143 Meyers C J, Shah S D, Patel S C, et al. Journal of Physical Chemistry B, 2001, 105(11), 2143. 144 Zhou H S, Zhu S M, Hibino M, et al. Advanced Materials, 2003, 15(24), 2107. 145 Su F B, Zhao X S, Wang Y, et al. Journal of Physical Chemistry B, 2005, 109(43), 20200. 146 Lee K T, Lytle J C, Ergang N S, et al. Advanced Functional Materials, 2005, 15(4), 547. 147 Yang G J, Li X Y, Guan Z R X, et al. Nano Letters, 2020, 20(5), 3836. 148 Liang C, Liang S, Xia Y, et al. Green Chemistry, 2018, 20(7), 1484. 149 Ai W, Wang X W, Zou C J, et al. Small, 2017, 13(8), 9. 150 Miao X, Sun D F, Zhou X Z, et al. Chemical Engineering Journal, 2019, 364, 208. 151 Mao J Y, Niu D C, Zheng N, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(3), 3424. 152 Zhang X, Zhou J, Zheng Y Y, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 9236. 153 Shen W, Kou W, Liu Y, et al. Chemical Engineering Journal, 2019, 368, 310. 154 Zhu P, Gastol D, Marshall J, et al. Journal of Power Sources, 2021, 485, 229321. 155 Chen L, Li Z, Li G Y, et al. Journal of Materials Science & Technology, 2020, 44, 229. 156 Liu J F, Su D, Liu L, et al. Nanoscale, 2020, 12(38), 19702. 157 Chen H H, He J, Li Y L, et al. Journal of Materials Chemistry A, 2019, 7(13), 7691. 158 Wu H, Hou C Y, Shen G Z, et al. Nano Research, 2018, 11(11), 5866.