Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 21050286-13    https://doi.org/10.11896/cldb.21050286
  无机非金属及其复合材料 |
锂离子电池用纳米碳材料研究进展
张佰伦1, 王凯1, 李嘉辉1, 钟海长2, 张文魁1, 章文献2, 梁初1,2,*
1 浙江工业大学材料科学与工程学院&浙江碳中和创新研究院,杭州 310014
2 福建省功能材料及应用重点实验室,福建 厦门 361024
Progress in Carbon Nanomaterials for Lithium-ion Batteries
ZHANG Bailun1, WANG Kai1, LI Jiahui1, ZHONG Haichang2, ZHANG Wenkui1, ZHANG Wenxian2, LIANG Chu1,2,*
1 College of Materials Science and Engineering & Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
2 Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen 361024, Fujian, China
下载:  全 文 ( PDF ) ( 4295KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池作为最有前景的储能器件之一,已经在便携式电子设备上广泛应用。然而使用传统电极材料,电池的能量密度和功率密度不够高、耐久性差、成本高,限制了其在电动汽车等方面的大规模应用。纳米碳材料的发展为设计适合锂离子电池的新型储能材料提供了机会。纳米碳材料作为一种新型碳材料具有许多独特的性能,包括独特的形貌结构、高比表面积、低扩散距离、高电导率和离子导电性能、可控的合成和掺杂等优点。因此,纳米碳材料在高可逆容量、高功率密度、长循环稳定性和高安全性锂离子电池中具有较大的应用前景。
然而,纳米碳材料普遍存在首次库仑效率低、电压滞后等缺点,且纳米碳材料的电化学性能取决于碳材料的形貌和微观结构。解决这一问题最常用的方法主要有:(1)通过对纳米碳材料的形貌和微结构调控来改善其电化学性能;(2)通过异质原子掺杂改善纳米碳材料的电化学性能;(3)将纳米碳与其他储锂材料复合形成复合电极材料。
本文主要综述了富勒烯、石墨烯、碳纳米管和多孔碳等四种具有代表性的纳米碳材料在锂离子电池中的最新研究进展,系统归纳了纳米结构和形貌对电化学性能的影响,讨论了纳米碳的合成、电化学储锂性能和电极反应机理。本文还对纳米碳材料未来在锂离子电池应用中需要解决的关键问题进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张佰伦
王凯
李嘉辉
钟海长
张文魁
章文献
梁初
关键词:  纳米碳  锂离子电池  富勒烯  石墨烯  碳纳米管  多孔碳    
Abstract: As one of the most promising energy storage devices, lithium-ion batteries have been widely used in portable electronic devices. However, the inadequate energy density and power density, poor durability and high cost, which are resulted from using traditional electrode materials, limit the large-scale applications of lithium-ion batteries in electric vehicles. The development of carbon nanomaterials provides an opportunity for the new energy storage materials applied in lithium-ion batteries. Nanocarbons have many unique characteristics, including unique morphology and microstructure, high specific surface area, low diffusion distance, high electronic and ionic conductivity, controllable synthesis and doping, etc. Therefore, nanocarbons have great application prospects in the field of lithium-ion batteries with high reversible capacity, high power density, good cycle stability and high safety.
However, nanocarbons as electrode materials exhibit low initial Coulombic efficiency and large voltage hysteresis during charging/discharging. Moreover, the electrochemical performance of nanocarbons is dependent on their morphology and microstructure. The following strategies are proposed to solve these problems: (Ⅰ) improving the electrochemical performance by adjusting the morphology and microstructure of nanocarbons; (Ⅱ) improving electrochemical performance by doping heteroatoms into nanocarbons; (Ⅲ) combining nanocarbons with other materials to form carbon-based composites for high-performance lithium storage.
The recent progress of nanocarbon materials in lithium-ion batteries, typically represented by fullerene, graphene, carbon nanotubes and po-rous carbon is reviewed in this paper. The influence of nano-size and morphology on the electrochemical performance of nanocarbons is also summarized. The synthesis of nano-carbon, lithium-ion battery performance and electrode reaction mechanism are emphasized. The purpose of this paper is to summarize the recent progress of carbon nanomaterials in the lithium-ion batteries and their key fundamental problems to be solved in the future.
Key words:  nanocarbon    lithium-ion battery    fullerene    graphene    carbon nanotube    porous carbon
发布日期:  2022-10-26
ZTFLH:  TM911  
基金资助: 国家自然科学基金(52072342;51677170);浙江省自然科学基金(LY19E010007);福建省功能材料及应用重点实验室开放基金(fma2020003)
通讯作者:  *cliang@zjut.edu.cn   
作者简介:  张佰伦,2018年6月毕业于井冈山大学,获得工学学士学位。现为浙江工业大学材料科学与工程学院硕士研究生,在梁初教授指导下从事碳材料的合成机理和储能应用研究。
梁初,浙江工业大学材料科学与工程学院&浙江碳中和创新研究院教授。2011年6月在浙江大学材料科学与工程学系取得博士学位,2011—2013年在浙江大学材料科学与工程学系从事博士后研究工作。2014入职浙江工业大学,其中2018—2019年前往美国马里兰大学帕克分校材料科学与工程学系进行访问交流。近年来,主要从事碳中和技术与新材料的基础理论和应用开发研究工作,在Nature Communications、Advanced Energy Materials、Small、Journal of Materials Chemistry A等期刊发表SCI学术论文110余篇。
引用本文:    
张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
ZHANG Bailun, WANG Kai, LI Jiahui, ZHONG Haichang, ZHANG Wenkui, ZHANG Wenxian, LIANG Chu. Progress in Carbon Nanomaterials for Lithium-ion Batteries. Materials Reports, 2022, 36(20): 21050286-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050286  或          http://www.mater-rep.com/CN/Y2022/V36/I20/21050286
1 Czernik S, Bridgwater A V. Energy & Fuels, 2004, 18(2), 590.
2 Sloan E D.Nature, 2003, 426(6964), 353.
3 Liang C, Pan L, Liang S, et al. Small, 2019, 15(33), 8.
4 Wang Y, Zhou L, Liang C, et al. New Journal of Chemistry, 2019, 43(10), 4123.
5 Liang C, Chen Y, Xu H, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 227.
6 Liang C, Chen Y, Wu M, et al. Nature Communications,2021,12(1),9.
7 Liang C, Gao M, Pan H, et al. Journal of Alloys and Compounds, 2013, 575, 246.
8 Liang C, Zhou C, Chen Z, et al. Ionics, 2018, 24(8), 2233.
9 Li M, Lu J, Chen Z W, et al. Advanced Materials, 2018, 30(33), 24.
10 Yang C Y, Chen J, Ji X, et al. Nature, 2019, 569(7755), 245.
11 Liu H D, Zhu Z Y, Yan Q Z, et al. Nature, 2020, 585(7823), 63.
12 Whittingham M S.Science, 1976, 192(4244), 1126.
13 Liang C, Liang S, Xia Y, et al. Journal of Materials Chemistry A, 2017, 5(34), 18221.
14 Pomerantseva E, Bonaccorso F, Feng X L, et al. Science, 2019, 366(6468), 969.
15 Wei Q L, Xiong F Y, Tan S S, et al. Advanced Materials, 2017, 29(20), 39.
16 Lu Y, Yu Y, Lou X W.Chem, 2018, 4(5), 972.
17 Zhu S, Li J J, Deng X Y, et al. Advanced Functional Materials, 2017, 27(9), 8.
18 Huang M, Mi K, Zhang J H, et al. Journal of Materials Chemistry A, 2017, 5(1), 266.
19 Kroto H W, Heath J R, O’brien S C, et al. Nature, 1985, 318(6042), 162.
20 Kratschmer W, Fostiropoulos K, Huffman D R.Chemical Physics Letters, 1990, 170(2-3), 167.
21 Yoshie K, Kasuya S, Eguchi K, et al. Applied Physics Letters, 1992, 61(23), 2782.
22 Chibante L P F, Thess A, Alford J M, et al. Journal of Physical Chemistry, 1993, 97(34), 8696.
23 Diederich F, Ettl R, Rubin Y, et al. Science, 1991, 252(5005), 548.
24 Inomata K, Aoki N, Koinuma H.Japanese Journal of Applied Physics Part 2-Letters, 1994, 33(2A), L197.
25 Howard J B, Mckinnon J T, Makarovsky Y, et al. Nature, 1991, 352(6331), 139.
26 Khan A J, Hanif M, Javed M S, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(9), 8568.
27 Koh W, Choi J I, Lee S G, et al. Carbon, 2011, 49(1), 286.
28 Shan C S, Yen H J, Wu K F, et al. Nano Energy, 2017, 40, 327.
29 Teprovich J A, Weeks J A, Ward P A, et al. ACS Applied Energy Mate-rials, 2019, 2(9), 6453.
30 Chen M, Guan R, Yang S.Advanced Science, 2019, 6(1), 1800941.
31 Dong Q, Ho C H Y, Yu H, et al. Chemistry of Materials, 2019, 31(17), 6833.
32 Li T, Dorn H C.Small, 2017, 13(8), 1603152.
33 Chabre Y, Djurado D, Armand M, et al. Journal of the American Chemical Society, 1992, 114(2), 764.
34 Yazami R, Cherigui A.Molecular Crystals and Liquid Crystals Science and Technology Section a-Molecular Crystals and Liquid Crystals, 1994, 244, 209.
35 Forro L, Mihaly L.Reports on Progress in Physics, 2001, 64(5), 649.
36 Tan Z Q, Ni K, Chen G X, et al. Advanced Materials,2017,29(8),8.
37 Guan J, Zhong X, Chen X, et al. Nanoscale, 2018, 10(5), 2473.
38 Chen Y Q, Cho C R, Manzhos S.Materials, 2019, 12(13), 12.
39 Li Z, Wang S H, Cui J, et al. ACS Nano, 2020, 14(2), 1600.
40 Han J G, Hwang C, Kim S H, et al. Advanced Energy Materials, 2020, 10(20), 14.
41 Park J, Joo S H, Kim Y J, et al. Advanced Functional Materials, 2019, 29(32), 9.
42 Hudaya C, Halim M, Proll J, et al. Journal of Power Sources, 2015, 298, 1.
43 Iijima S.Nature, 1991, 354(6348), 56.
44 Lim H E, Miyata Y, Kitaura R, et al. Nature Communications, 2013, 4, 7.
45 Fang X Q, Shashurin A, Teel G, et al. Carbon, 2016, 107, 273.
46 Yang F, Wang X, Zhang D Q, et al. Nature, 2014, 510(7506), 522.
47 Krasheninnikov A V, Banhart F.Nature Materials, 2007, 6(10), 723.
48 Tang T, Chen X C, Meng X Y, et al. Angewandte Chemie-International Edition, 2005, 44(10), 1517.
49 Laplaze D, Bernier P, Maser W K, et al. Carbon, 1998, 36(5-6), 685.
50 Li J, Papadopoulos C, Xu J.Nature, 1999, 402(6759), 253.
51 Su Y, Zhang Y, Wei H, et al. Carbon, 2012, 50(7), 2556.
52 Alvarez W E, Kitiyanan B, Borgna A, et al. Carbon, 2001, 39(4), 547.
53 Liang S, Xia Y, Liang C, et al. Journal of Materials Chemistry A, 2018, 6(21), 9906.
54 Xia Y, Yu L, Lu C, et al. Journal of Alloys and Compounds, 2021, 859, 157806.
55 Eom J Y, Kwon H S, Liu J, et al. Carbon, 2004, 42(12-13), 2589.
56 Gao B, Bower C, Lorentzen J D, et al. Chemical Physics Letters, 2000, 327(1-2), 69.
57 Eom J, Kim D, Kwon H S.Journal of Power Sources, 2006, 157(1), 507.
58 Kar T, Pattanayak J, Scheiner S.Journal of Physical Chemistry A, 2001, 105(45), 10397.
59 Nishidate K, Hasegawa M.Physical Review B, 2005, 71(24), 245418.
60 Garau C, Frontera A, Quinonero D, et al. Chemical Physics Letters, 2003, 374(5-6), 548.
61 Zhao J, Buldum A, Han J, et al. Physical Review Letters, 2000, 85(8), 1706.
62 Deng Z N, Jiang H, Hu Y J, et al. Advanced Materials,2017,29(10),7.
63 Tabassum H, Zou R Q, Mahmood A, et al. Advanced Materials, 2018, 30(8), 7.
64 Kwon Y H, Minnici K, Park J J, et al. Journal of the American Chemical Society, 2018, 140(17), 5666.
65 Park C, Samuel E, Joshi B, et al. Chemical Engineering Journal, 2020, 395, 13.
66 Li J F, Han L, Zhang X L, et al. Chemical Engineering Journal, 2021, 406, 10.
67 Zhao Y T, Dong W J, Riaz M S, et al. ACS Applied Materials & Interfaces, 2018, 10(50), 43641.
68 Wu R B, Wang D P, Rui X H, et al. Advanced Materials, 2015, 27(19), 3038.
69 Jin D, Yang X F, Ou Y Q, et al. Science Bulletin, 2020, 65(6), 452.
70 Shen L, Dong Q C, Zhu G Y, et al. Advanced Materials Interfaces, 2018, 5(14), 7.
71 Lin C F, Hu L, Cheng C B, et al. Electrochimica Acta, 2018, 260, 65.
72 Cui X, Wang Y Q, Xu Q Y, et al. Nanotechnology,2017,28(25),10.
73 Sun H Y, Hanlon D, Dinh D A, et al. 2d Materials, 2018, 5(1), 10.
74 Zhang Z J, Zhao H L, Teng Y Q, et al. Advanced Energy Materials, 2018, 8(7), 11.
75 Peng Y T, Le Z Y, Wen M C, et al. Nano Energy, 2017, 35, 44.
76 Yao X, Guo G L, Li P Z, et al. ACS Applied Materials & Interfaces, 2017, 9(49), 42438.
77 Zhang H, Wang Y S, Zhao W Q, et al. ACS Applied Materials & Interfaces, 2017, 9(43), 37813.
78 Zhang Y P, Wang L L, Xu H, et al. Advanced Functional Materials, 2020, 30(12), 12.
79 Palacin M R, De Guibert A.Science, 2016, 351(6273), 7.
80 Hou T, Liu B, Sun X, et al. ACS Nano, 2021, 15(4), 6735.
81 Lin Z, Zeng Z, Gui X, et al. Advanced Energy Materials, 2016, 6(17), 1600554.
82 Sun X, Zhu X, Yang X, et al. Green Energy & Environment, 2017, 2(2), 160.
83 Liu T, Zhang M, Wang Y L, et al. Advanced Energy Materials, 2018, 8(30), 10.
84 Yuan C P, Wu Q, Shao Q, et al. Journal of Colloid And Interface Science, 2018, 517, 72.
85 Lee J, Lee D M, Jung Y, et al. Nature Communications, 2019, 10(1), 2962.
86 Zhang T, Han S, Guo W, et al. Sustainable Materials and Technologies, 2019, 20, e00096.
87 Geim A K, Novoselov K S.Nature Materials, 2007, 6(3), 183.
88 Khan U, O’neill A, Lotya M, et al. Small, 2010, 6(7), 864.
89 Emtsev K V, Bostwick A, Horn K, et al. Nature Materials, 2009, 8(3), 203.
90 Li X S, Cai W W, An J H, et al. Science, 2009, 324(5932), 1312.
91 Yi M, Shen Z G.Journal of Materials Chemistry A, 2015, 3(22), 11700.
92 Gao H Y, Zhu K X, Hu G X, et al. Chemical Engineering Journal, 2017, 308, 872.
93 Kim J, Park H, Hannon J B, et al. Science, 2013, 342(6160), 833.
94 Gao Z L, Zhang Q C, Naylor C H, et al. ACS Nano, 2018, 12(3), 2275.
95 Zhang C T F, Tu R, Zhang S, et al. Carbon, 2017, 122, 352.
96 Luong D X, Bets K V, Algozeeb W A, et al. Nature, 2020, 577(7792), 647.
97 Xia Y, Ren Q, Lu C, et al. Materials Research Bulletin, 2021, 135, 111129.
98 Bian F, Yu J, Song W, et al. Electrochimica Acta, 2020, 330, 135248.
99 Dahn J R, Zheng T, Liu Y H, et al. Science, 1995, 270(5236), 590.
100 Sato K, Noguchi M, Demachi A, et al. Science, 1994, 264(5158), 556.
101 Ji K M, Han J H, Hirata A, et al. Nature Communications,2019,10,10.
102 Kühne M, Borrnert F, Fecher S, et al. Nature, 2018, 564(7735), 234.
103 Yao F, Gunes F, Ta H Q, et al. Journal of the American Chemical Society, 2012, 134(20), 8646.
104 Choi D S, Kim C, Lim J, et al. Advanced Materials,2018,30(51),9.
105 Xu Q, Sun J K, Yu Z L, et al. Advanced Materials, 2018, 30(25), 6.
106 Jing M J, Zhou M J, Li G Y, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9662.
107 Sun L N, Deng Q W, Li Y L, et al. Electrochimica Acta, 2017, 241, 252.
108 Jiang T C, Bu F X, Feng X X, et al. ACS Nano, 2017, 11(5), 5140.
109 Wang B, Al Abdulla W, Wang D L, et al. Energy & Environmental Science, 2015, 8(3), 869.
110 Shi Y, Wang J Z, Chou S L, et al. Nano Letters, 2013, 13(10), 4715.
111 Zhang R, Wang D, Qin L C, et al. Journal of Materials Chemistry A, 2017, 5(32), 17001.
112 Sheng L Z, Liang S C, Wei T, et al. Energy Storage Materials, 2018, 12, 94.
113 Chen B, Meng Y H, He F, et al. Nano Energy, 2017, 41, 154.
114 Chen W H, Song K M, Mi L W, et al. Journal of Materials Chemistry A, 2017, 5(20), 10027.
115 Chang J B, Huang X K, Zhou G H, et al. Advanced Materials, 2014, 26(5), 758.
116 Ding S K, Cheng W, Zhang L M, et al. Journal of Colloid and Interface Science, 2021, 589, 308.
117 Li C, Zhao M, Sun C N, et al. Journal of Power Sources, 2018, 397, 162.
118 Kopuklu B B, Tasdemir A, Gursel S A, et al. Carbon, 2021, 174, 158.
119 Jiang Y Z, Li Y, Zhou P, et al. Advanced Materials,2017,29(48),8.
120 Wang H S, Li Y Z, Li Y B, et al. Nano Letters, 2019, 19(2), 1326.
121 Wang M Z, Tang M, Chen S L, et al. Advanced Materials, 2017, 29(47), 7.
122 Shi Y, Wen L, Zhou G M, et al. 2d Materials, 2015, 2(2), 8.
123 Mo R W, Rooney D, Sun K N, et al. Nature Communications, 2017, 8, 9.
124 Wang F, Wang H, Mao J.Journal of Materials Science, 2019, 54(1), 36.
125 Li Y, Wu F F, Jin X, et al. Inorganic Chemistry Communications, 2020, 112, 6.
126 Saroja A P V K, Garapati M S, Shyiamaladevi R, et al. Applied Surface Science, 2020, 504, 144430.
127 Jana R, Chowdhury C, Datta A.Chemsuschem, 2020, 13(15), 3855.
128 Chao D, Zhu C, Xia X, et al. Nano Letters, 2015, 15(1), 565.
129 Chen Y M, Hsu S T, Tseng Y H, et al. Small, 2018, 14(12), 1703571.
130 Zheng X H, Hu Q L, Zhou X S, et al. Materials & Design, 2021, 201, 16.
131 Gu M, Ko S, Yoo S, et al. Journal of Power Sources, 2015, 300, 351.
132 Zhang Y, Weng W, Yang J J, et al. Journal of Materials Science, 2019, 54(1), 582.
133 Wang K, Chen Y, Wang Y F, et al. Journal of Alloys and Compounds, 2020, 830, 8.
134 Jin C, Sheng O, Luo J, et al. Nano Energy, 2017, 37, 177.
135 Liang S, Liang C, Xia Y, et al. Journal of Power Sources, 2016, 306, 200.
136 Huang H, Yang G, Yu J, et al. Electrochimica Acta, 2021, 373, 137933.
137 Wan L, Chen D Q, Liu J X, et al. Journal of Alloys and Compounds, 2020, 823, 11.
138 Xia Y, Cai S, Lu C, et al. Journal of Alloys and Compounds, 2020, 816, 10.
139 Yek P N Y, Liew R K, Osma M S, et al. Journal of Environmental Management, 2019, 236, 245.
140 Zhao H W, Li L X, Liu Y Y, et al. Applied Surface Science, 2020, 504, 9.
141 Huang H, Cheng C, Liang S, et al. Carbon, 2018, 130, 559.
142 Wang K, Feng G, Liang C, et al. ACS Applied Energy Materials, 2018, 1(12), 7123.
143 Meyers C J, Shah S D, Patel S C, et al. Journal of Physical Chemistry B, 2001, 105(11), 2143.
144 Zhou H S, Zhu S M, Hibino M, et al. Advanced Materials, 2003, 15(24), 2107.
145 Su F B, Zhao X S, Wang Y, et al. Journal of Physical Chemistry B, 2005, 109(43), 20200.
146 Lee K T, Lytle J C, Ergang N S, et al. Advanced Functional Materials, 2005, 15(4), 547.
147 Yang G J, Li X Y, Guan Z R X, et al. Nano Letters, 2020, 20(5), 3836.
148 Liang C, Liang S, Xia Y, et al. Green Chemistry, 2018, 20(7), 1484.
149 Ai W, Wang X W, Zou C J, et al. Small, 2017, 13(8), 9.
150 Miao X, Sun D F, Zhou X Z, et al. Chemical Engineering Journal, 2019, 364, 208.
151 Mao J Y, Niu D C, Zheng N, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(3), 3424.
152 Zhang X, Zhou J, Zheng Y Y, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 9236.
153 Shen W, Kou W, Liu Y, et al. Chemical Engineering Journal, 2019, 368, 310.
154 Zhu P, Gastol D, Marshall J, et al. Journal of Power Sources, 2021, 485, 229321.
155 Chen L, Li Z, Li G Y, et al. Journal of Materials Science & Technology, 2020, 44, 229.
156 Liu J F, Su D, Liu L, et al. Nanoscale, 2020, 12(38), 19702.
157 Chen H H, He J, Li Y L, et al. Journal of Materials Chemistry A, 2019, 7(13), 7691.
158 Wu H, Hou C Y, Shen G Z, et al. Nano Research, 2018, 11(11), 5866.
[1] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[2] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[3] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[4] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[5] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[6] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[7] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[8] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[9] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[10] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[11] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[12] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[13] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[14] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[15] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed