Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 23010029-18    https://doi.org/10.11896/cldb.23010029
  金属与金属基复合材料 |
高速钢耐磨材料研究进展
陈鹏1,2, 李卫1,2,3,*, 易艳良1,2,3,*
1 暨南大学先进耐磨蚀及功能材料研究院,广州 510632
2 暨南大学高性能金属耐磨材料技术国家地方联合工程研究中心,广州 510632
3 暨南大学韶关研究院,广东 韶关 521000
Research Progress on Wear-resistant Materials for High Speed Steel
CHEN Peng1,2, LI Wei1,2,3,*, YI Yanliang1,2,3,*
1 Institute of Advance Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
2 National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology, Jinan University, Guangzhou 510632, China
3 Shaoguan Research Institute, Jinan University, Shaoguan 521000, Guangdong, China
下载:  全 文 ( PDF ) ( 71040KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文介绍了国内外高速钢耐磨材料研究进展,主要综述了高速钢耐磨材料的发展简史、合金成分、制备工艺、热处理工艺、计算科学、力学性能及工程应用,系统总结了高速钢耐磨材料的研究特点,从合金成分、微观组织及力学性能方面加以阐述。秉持成分是基础、组织是关键、工艺是手段和性能是目的的观点,为高速钢耐磨材料的研究及开发提供实质性价值。此外,计算科学的应用范围不断扩大,金属耐磨材料研究将趋于多样化,是一种不可或缺的研究性手段。最后,根据高速钢耐磨材料研究技术所要面临的问题和挑战,展望了五个研究方向,以促进高速钢耐磨材料产业技术创新发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈鹏
李卫
易艳良
关键词:  高速钢  耐磨材料  力学性能    
Abstract: The research progress and application of high speed steel are introduced, and the research characteristics of high speed steel are summarized systematically, including brief history, alloy composition, preparation process, heat treatment process, mechanical properties, computational science, practical application and prospect. A high speed steel material with excellent properties must be combined with its composition, microstructure, process and properties, which will directly determine the service life of the material. This will provide substantial value for the research of high speed steel. In addition, the application scope of computer science is expanding, which is an indispensable research mean, facilitating the research of metal wear resistant materials tending to be diversified. Finally, five directions of future research are put forward, which are mainly based on the problems and challenges of the research technology in the high speed steel materials, strengthening the development of high speed steel industry technology innovation as a result.
Key words:  high speed steel    wear-resistant material    mechanical property
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(52005217);广东省基础与应用基础研究基金(2024A1515012353;2021A1515010523);广州市科技计划项目(2024A04J4063);广东省教育厅高校科研平台和科研项目(2022ZDZX3003)
通讯作者:  *李卫,暨南大学教授、博士研究生导师,高性能金属耐磨材料技术国家地方联合工程研究中心主任。“百千万人才工程”第一、二层次,国务院特殊津贴专家,国家有突出贡献专家,南粤百杰,南粤优秀教师,全国优秀科技工作者。主要从事金属耐磨材料、耐蚀材料、金属基生物医用材料、材料加工工程、复合材料以及材料磨损与腐蚀等方面的研究、开发和生产技术工作。主持/参与40余项国家和省部级科技项目以及科技成果工程化、产业化项目,1次获国家科技进步二等奖,1次获国家科技进步三等奖,4次获省部级科技进步一等奖。科技成果产业化经济效益显著,取得发明专利20项,出版专著2部,主编和参编行业技术手册3部,主持修订国家标准10项。liweijn@aliyun.com
易艳良,2019年毕业于西安交通大学,获得工学博士学位。现为暨南大学副教授、硕士研究生导师,暨南大学杰青第一层次。研究方向主要为激光增材制造;高温/高熵合金制造;金属/涂层材料摩擦磨损、腐蚀及高温氧化。获2022年度中国有色金属工业科学技术一等奖,主持和参与项目20项(包括国家重大研究计划,国家自然科学基金,国家级先进技术专项、广东省教育厅重点领域专项等),在本领域知名期刊Acta.Mater.、J.Magnes.Alloy.、J.Mater.Sci.Technol.、Corros.Sci.、Mater.Sci.Eng.A、Mater.Design.、Wear、Tribol.Int.等发表论文80余篇(其中第一/通信作者身份发表论文42篇),修订国家标准1项,撰写专著2章节,申请/授权发明专利21项。y_yanliang@163.com   
作者简介:  陈鹏,暨南大学博士研究生,2023年毕业于暨南大学获得工学硕士学位。研究方向主要为金属材料及金属基复合材料、金属材料制备与材料加工工程。
引用本文:    
陈鹏, 李卫, 易艳良. 高速钢耐磨材料研究进展[J]. 材料导报, 2024, 38(10): 23010029-18.
CHEN Peng, LI Wei, YI Yanliang. Research Progress on Wear-resistant Materials for High Speed Steel. Materials Reports, 2024, 38(10): 23010029-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010029  或          http://www.mater-rep.com/CN/Y2024/V38/I10/23010029
1 Li W, Deng S P, Song L, et al. Cast Wear-Resistant Material, 2019(01), 61 (in Chinese).
李卫, 邓世萍, 宋量, 等. 铸造设备与工艺, 2019(01), 61.
2 Chen H H, Xing J D, Li W. Handbook for application of wear-resistant materials, Machinery Industry Press, China, 2012(in Chinese).
陈华辉, 邢建东, 李卫. 耐磨材料应用手册, 机械工业出版社, 2012.
3 Wei S Z, Xu L J. Acta Metallurgica Sinica, 2020, 56(04), 523 (in Chinese).
魏世忠, 徐流杰. 金属学报, 2020, 56(04), 523.
4 Chen H H, Zhao H Y, Ma X D, et al. In: Special Steel Branch of China Metal Society. Beijing, 2005, pp. 4 (in Chinese).
陈华辉, 赵会友, 马向东, 等. 中国金属学会特殊钢分会. 北京, 2005, pp. 4.
5 Fu H G. China Foundry, 2009, 58(07), 690 (in Chinese).
符寒光. 铸造, 2009, 58(07), 690.
6 Li W. China Foundry, 2012, 61(09), 967 (in Chinese).
李卫. 铸造, 2012, 61(09), 967.
7 Lu L. Study on spray-formed Nb-containing M3 high speed steel: microstructures and properties optimization application, Ph. D. Thesis, University of Science and Technology Beijing, China, 2016 (in Chinese).
卢林. 喷射成型含铌M3型高速钢组织性能优化与应用研究. 博士学位论文, 北京科技大学, 2016.
8 Luo Y W. Formation mechanism and evolution laws of carbides in M42 high speed steel. Ph. D. Thesis, University of Science and Technology Beijing, China, 2019 (in Chinese).
罗乙娲. M42高速钢中碳化物的析出机理与转化规律研究. 博士学位论文, 北京科技大学, 2019.
9 Sun H X. Study on the preparation, microstructure and performance of power metallurgy high speed steel. Ph. D. Thesis, University of Science and Technology Beijing, China, 2021 (in Chinese).
孙海霞. 粉末高速钢的制备及组织性能的研究. 博士学位论文, 北京科技大学, 2021.
10 Fu H G. High-speed steel roll knowledge question and answer, Metallurgical Industry Press, China, 2010 (in Chinese).
符寒光. 高速钢轧辊知识问答, 冶金工业出版社, 2010.
11 Fu H G, Xing J D. Manufacturing technology of high speed steel roll, Metallurgical Industry Press, China, 2007 (in Chinese).
符寒光, 刑建东. 高速钢轧辊制造技术, 冶金工业出版社, 2007.
12 Deng Y K, Chen J R, Wang S Z. High speed tool steel, Machinery Industry Press, China, 2002 (in Chinese).
邓玉昆, 陈景榕, 王世章. 高速工具钢, 冶金工业出版社, 2002.
13 Yu Q X, Zhu Z F. Journal of Mechanical Engineering, 2003, 39(12), 62 (in Chinese).
于启勋, 朱正芳. 机械工程学报, 2003, 39(12), 62.
14 Luo D, Li Z Z, Liu H W. Special Steel, 1996, 17(2), 8 (in Chinese).
罗迪, 李忠之, 刘惠文. 特殊钢, 1996, 17(2), 8.
15 Boccalini, Goldenstein. International Materials Reviews, 2001, 46(2), 92.
16 Song X Q, Liu X Y, Zhao L J. Heat Treatment of Metal Abroad, 2005(01), 30 (in Chinese).
宋学全, 刘秀英, 赵黎娟. 国外金属热处理, 2005(01), 30.
17 Xu L J. Microstructure, wear performance and electromagnetic composite forming technology of high vanadium high speed steel for rolls. Ph. D. Thesis, Xi’an Jiaotong University, China, 2007 (in Chinese).
徐流杰. 轧辊用高钒高速钢组织、磨损性能及电磁复合成型技术. 博士学位论文, 西安交通大学, 2007.
18 Wei S Z, Zhu J H, Xu L J, et al. Materials and Design, 2006, 27(1), 58.
19 Wu W D, Xiong X, Liu R T, et al. Materials Science and Engineering of Powder Metallurgy, 2019, 24(03), 273 (in Chinese).
伍文灯, 熊翔, 刘如铁, 等. 粉末冶金材料科学与工程, 2019, 24(03), 273.
20 Han M R, Wei S Z, Han H, et al. Hot Working Technology, 2015, 44(24), 13 (in Chinese).
韩明儒, 魏世忠, 韩华, 等. 热加工工艺, 2015, 44(24), 13.
21 Pan F S, Zhou S Z, Ding P D. Iron and Steel, 1996(09), 75 (in Chinese).
潘复生, 周守则, 丁培道. 钢铁, 1996(09), 75.
22 Pan F S, Zhou S Z, Ding P D, et al. Sichuan Metallurgy, 1990(01), 62 (in Chinese).
潘复生, 周守则, 丁培道, 等. 四川冶金, 1990(01), 62.
23 Pan F S, Zhou S Z, Ding P D, et al. Iron and Steel, 1990(05), 38 (in Chinese).
潘复生, 周守则, 丁培道, 等. 钢铁, 1990(05), 38.
24 Li Y L, Wu Q, Liu C S. Materials Express, 2019(9), 764.
25 Luo D, Shen R M, Xing G H, et al. Journal of Iron and Steel Research, 1984(02), 181 (in Chinese).
罗迪, 沈汝美, 邢国华, 等. 钢铁研究总院学报, 1984(02), 181.
26 Guo P J, Ma S Q, Jiao M, et al. Materials, 2022, 15(2), 557.
27 Ren X Y, Fu H G, Xing J D. Steel Research International, 2019, 90(2).
28 Kang Y J, Oh J C, Lee H C, et al. Metallurgical and Materials Transactions A, 2001, 32(10), 2515.
29 Xu G L, Huang P, Wei Z X, et al. Steel Research International, 2023, 94(10), 2300021.
30 Gonzalez-Pociño A, Alvarez-Antolin F, Asensio-Lozano J. Metals, 2019, 9(6), 627.
31 Ding P, Shi G, Zhou S. Metallurgical and Materials Transactions A, 1993, 24, 1265.
32 Xiao Z X, Li H P, He J N, et al. Foundry, 2017, 66(10), 1067 (in Chinese).
肖志霞, 李海鹏, 何继宁, 等. 铸造, 2017, 66(10), 1067.
33 Chen N, Long X H, Teng H, et al. Powder Metallurgy Materials Science and Engineering, 2022, 27(02), 161 (in Chinese).
陈楠, 龙学湖, 滕浩, 等. 粉末冶金材料科学与工程, 2022, 27(02), 161.
34 Zhang H W, Nakajima K, Su M M, et al. Steel Research International, 2018, 89(10), 1800172.
35 Astini V, Prasetyo Y, Baek E R. Metals and Materials International, 2012, 18, 923.
36 Liao C, Li W, Liu J H, et al. Foundry, 2011, 60(04), 390 (in Chinese).
廖畅, 李卫, 刘晋珲, 等. 铸造, 2011, 60(04), 390.
37 Liu Z Q, Cao H J, Zheng X P, et al. Hot Working Technology, 2014, 43(16), 23(in Chinese).
刘志强, 曹环军, 郑喜平, 等. 热加工工艺, 2014, 43(16), 23.
38 Liu Y M, Chen Z H, Guo G Q, et al. Journal of Henan University of Science and Technology, 2002(02), 8 (in Chinese).
刘亚民, 陈振华, 郭国庆, 等. 洛阳工学院学报, 2002(02), 8.
39 Wei S Z, Xu L J, Zhu J H, et al. Journal of Iron and Steel Research, 2005(05), 66 (in Chinese).
魏世忠, 徐流杰, 朱金华, 等. 钢铁研究学报, 2005(05), 66.
40 Wen T, Hu X, Song Y, et al. Materials Science and Engineering A, 2013, 588, 201.
41 Yang Y W, Fu H G, Wang K M, et al. Transaction of Materials and Heat Treatment, 2016, 37(07), 48 (in Chinese).
杨勇维, 符寒光, 王开明, 等. 材料热处理学报, 2016, 37(07), 48.
42 Chen H T, Ma S C, Luo Y, et al. Foundry Technology, 2021, 42(06), 465 (in Chinese).
陈翰韬, 马胜超, 罗洋, 等. 铸造技术, 2021, 42(06), 465.
43 Ma S Q, Pan W J, Xing J D, et al. Materials Characterization, 2017, 132, 1.
44 Li L J, Zhang J M, Chi H X, et al. Heat Treatment of Metals, 2022, 47(01), 73 (in Chinese).
李亮军, 张家敏, 迟宏宵, 等. 金属热处理, 2022, 47(01), 73.
45 Toptop G, Kisasoz A, Karaaslan A. Materials Testing, 2012, 54(6), 427.
46 Zhang H W, Keiji N, Su M M, et al. Steel Research International, 2018, 89, 1800172.
47 Ren X, Fu H, Xing J, et al. Materials Science and Engineering A, 2019, 742, 617.
48 Ma S Q, Tan X, Chen H T, et al. China Foundry Equipment and Technology, 2019, 54(01), 5 (in Chinese).
马胜强, 檀旭, 陈翰韬, 等. 中国铸造装备与技术, 2019, 54(01), 5.
49 Yang Y W, Fu H G, Lei Y P, et al. Journal of Materials Engineering and Performance, 2016, 25(2), 409.
50 Yi Y, Li Q, Huang X, et al. Materials & Design, 2021, 197, 109164.
51 Jia C C, Zhang W L, Hu B T, et al, Powder Metallurgy Technology, 2017, 35(06), 416 (in Chinese).
贾成厂, 张万里, 胡彬涛, 等. 粉末冶金技术, 2017, 35(06), 416.
52 Guo F, Lin Q. Heat Treatment of Metals, 2006(12), 33 (in Chinese).
郭锋, 林勤. 金属热处理, 2006(12), 33.
53 Chen P, Liu Y, Ping X, et al. Materials Science and Engineering A, 2023, 863, 144520.
54 Lou Y C. Application manual of foundry standard (I), China Machine Press, China, 2012 (in Chinese).
娄延春. 铸造标准应用手册(上), 机械工业出版社, 2012.
55 Lou Y C. Application manual of foundry standard (Ⅱ), China Machine Press, China, 2012 (in Chinese).
娄延春. 铸造标准应用手册(中), 机械工业出版社, 2012.
56 Ai Y L. Engineering materials and forming technology, China Machine Press, China, 2016 (in Chinese).
艾云龙. 工程材料及成形技术, 机械工业出版社, 2016.
57 Wan R F. China Foundry Equipment and Technology, 2003(05), 1 (in Chinese).
万仁芳. 中国铸造装备与技术, 2003(05), 1.
58 Zhu P L. Xu Z F, Yu H, et al. Special Casting and Non-Ferrous Alloys, 2013, 33(02), 136 (in Chinese).
朱佩兰, 徐志锋, 余欢, 等. 特种铸造及有色合金, 2013, 33(02), 136.
59 Zhao Z G. Basic research on continuous casting process of high speed steel (M2). Ph. D. Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese).
赵志刚. 高速工具钢(M2)连铸工艺基础研究. 博士学位论文, 北京科技大学, 2018.
60 Abaqus. Casting technology, Zhihu, 2017 (in Chinese).
Abaqus. 铸造技术, 知乎, 2017.
61 Cao Y J, Zhong H L, Hao Q, et al. Powder Metallurgy Industry, 2011(1), 45 (in Chinese).
曹勇家, 钟海林, 郝权, 等. 粉末冶金工业, 2011(1), 45.
62 Sun H X, Chen C G, Zhang Z W, et al. Rare Metal Materials and Engineering, 2019, 48(10), 3246 (in Chinese).
孙海霞, 陈存广, 张振威, 等. 稀有金属材料与工程, 2019, 48(10), 3246.
63 Wang L X, Ge C C, Guo S Q, et al. Materials Reports, 2010, 24(S1, 459 (in Chinese).
王丽仙, 葛昌纯, 郭双全, 等. 材料导报, 2010, 24(S1), 459.
64 Dai X Y, Yan J S, Li Z Z. Mechanical Engineering Materials, 1985(05), 11 (in Chinese).
戴行仪, 严建肃, 栗振忠. 机械工程材料, 1985(05), 11.
65 Dai X Y, Yan J S, Zhong S L, et al. Powder Metallurgy Technology, 1988(01), 52 (in Chinese).
戴行仪, 严建肃, 仲守亮, 等. 粉末冶金技术, 1988(01), 52.
66 Guo G C. Powder Metallurgy Technology, 2001(04), 233 (in Chinese).
郭庚辰. 粉末冶金技术, 2001(04), 233.
67 Han D, Zou F, Yuan J. Tool Engineering, 2020(4), 54 (in Chinese).
韩冬, 邹峰, 袁姣. 工具技术, 2020(4), 54.
68 Xu Q. Aeronautical Manufacturing Technology, 2020, 63(15), 34 (in Chinese).
徐强. 航空制造技术, 2020, 63(15), 34.
69 Zhang G Q, Xu N, Wang Y. Hot Working Technology, 2017 (19), 9 (in Chinese).
张广庆, 徐楠, 王瑗. 热加工工艺, 2017 (19), 9.
70 He J, Xiao Z Y, Yang S, et al. Powder Metallurgy Industry, 2017, 27(5), 12 (in Chinese).
何杰, 肖志瑜, 杨硕, 等. 粉末冶金工业, 2017, 27(5), 12.
71 Liu B W. Optization of alloy composition and properties of high speed steel fabricated by powder metallurgy. Ph. D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese).
刘博文. 粉末冶金高速钢合金成分及性能优化. 博士学位论文, 北京科技大学, 2020.
72 Zhao Q, Chen Y, Xu Y, et al. Materials & Design, 2021, 200, 109457.
73 Xin L X, Liu L X. Foundry Technology, 2018, 39(03), 665 (in Chinese).
辛李霞, 刘丽霞. 铸造技术, 2018, 39(03), 665.
74 Duan S C. Fundamental study on the controlling loss of alloying elements of large IN718 electroslag remelting ingots. Ph. D. Thesis, University of Science and Technology Beijing, China, 2021 (in Chinese).
段生朝. 电渣重熔大型IN718镍基合金铸锭合金元素氧化控制的基础研究, 博士学位论文, 北京科技大学, 2021.
75 Peng L S, Liu C Q, Zhou H, et al. Materials Reports, 2022(S1), 1 (in Chinese).
彭龙生, 刘春泉, 周浩, 等. 材料导报, 2022(S1), 1.
76 Liu Y. Fundamental research on preparation of ultra clean dual alloy ingot by vacuum electroslag remelting. Ph. D. Thesis, Wuhan University of Science and Technology, China, 2019 (in Chinese).
刘昱. 真空电渣重熔制备超洁净双合金锭的基础研究. 博士学位论文, 武汉科技大学, 2019.
77 Guo Z Q, Jiang Z Y, Li H M, et al. Foundry Technology, 2017, 38(12), 2959 (in Chinese).
郭自强, 姜宗营, 李怀明, 等. 铸造技术, 2017, 38(12), 2959.
78 Tang J J. The key technology of large scale casting based on electroslag remelt. Ph. D. Thesis, Nanchang University, China, 2011 (in Chinese).
唐建军. 基于电渣重熔的大型铸锭成型关键技术研究. 博士学位论文, 南昌大学, 2011.
79 Yan C. Study on electroslag remelting technology of high chrome steel and characteristics of the metal and slag. Ph. D. Thesis, Northeast University, China, 2015 (in Chinese).
闫晨. 高铬合金钢电渣重熔工艺及渣金特性研究. 博士学位论文, 东北大学, 2015.
80 Du G. Study on the control of carbides in bearing steel GCr15 based on electroslag remelting process. Ph. D. Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese).
杜刚. 基于电渣重熔GCr15轴承钢中碳化物控制的研究. 博士学位论文, 北京科技大学, 2018.
81 Li B K, Huang X C, Liu Z Q, et al. Iron and Steel, 2022, 57(06), 1 (in Chinese).
李宝宽, 黄雪驰, 刘中秋, 等. 钢铁, 2022, 57(06), 1.
82 Huang Xuechi, Li Baokuan, Liu Zhongqiu, et al. Vacuum, 2020, 172, 109069.
83 Song X Y, Zhu L, Yin F X. Cfhi Technology, 2013(02), 1 (in Chinese).
宋肖阳, 朱琳, 殷福星. 一重技术, 2013(02), 1.
84 Xu G L, Huang P, Sun X, et al. Chinese Material Progress, 2020, 39(01), 70 (in Chinese).
徐桂丽, 黄鹏, 孙溪, 等. 中国材料进展, 2020, 39(01), 70.
85 Liu Mingxiang, Cui Zhenshan, Shang Xiaoqing, et al. Steel Research International, 2018, 89(6), 1700529.
86 Zhao B Q, Hu H F, Zhang D N. Heat Treatment Technology and Equipment, 2018, 39(03), 20 (in Chinese).
赵步青, 胡会峰, 张丹宁. 热处理技术与装备, 2018, 39(03), 20.
87 Zhao B Q, Hu H F, Zhang D N. Heat Treatment Technology and Equipment, 2018, 39(04), 1 (in Chinese).
赵步青, 胡会峰, 张丹宁. 热处理技术与装备, 2018, 39(04), 1.
88 Heat Treatment Society of Chinese Mechanical Engineering Society. Heat treatment manual (Heat treatment quality control and inspection), China Machine Press, 2013 (in Chinese).
中国机械工程学会热处理学会. 热处理手册(热处理质量控制和检验), 机械工业出版社, 2013.
89 Zhao B Q. Heat Treatment Technology, 2017(09), 12 (in Chinese).
赵步青. 金属加工(热加工), 2017(09), 12.
90 Xue Q, Yi C, Zhou Y, et al. Heat Treatment of Metals, 2017, 42(11), 156 (in Chinese).
薛屺, 易诚, 周毅, 等. 金属热处理, 2017, 42(11), 156.
91 Yang Z Q, Guo H X, Yu W W. Foundry Technology, 2020, 41(03), 231 (in Chinese).
杨智强, 郭红星, 吕潍威. 铸造技术, 2020, 41(03), 231.
92 Ma Z, Lu G Y, Fu Y, et al. Journal of Material Heat Treatment, 2020, 41(06), 121 (in Chinese).
马征, 吕广焱, 付莹, 等. 材料热处理学报, 2020, 41(06), 121.
93 Su M, Xiao Z X, Feng J H, et al. Hot Working Technology, 2021, 50(06), 150 (in Chinese).
苏铭, 肖志霞, 冯建航, 等. 热加工工艺, 2021, 50(06), 150.
94 Lyu Cheng, Zhou Jianyu, Zhang Xianglin, et al. Materials Science & Engineering A, 2021, 815, 141268.
95 Kang M, Lee Y K. Metallurgical and Materials Transactions A, 2016, 47(7), 3365.
96 Chao B X, Jiang K Q, Wang B L, et al. Heat Treatment Technology and Equipment, 2018, 39(05), 46 (in Chinese).
巢昺轩, 蒋克全, 王宝龙, 等. 热处理技术与装备, 2018, 39(05), 46.
97 Wang Y, Chu S, Mao B, et al. Journal of Materials Research and Technology, 2022, 18, 1521.
98 Ma K, Yang F L, Huang K, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(02), 241 (in Chinese).
马凯, 杨伏良, 黄珂, 等. 粉末冶金材料科学与工程, 2014, 19(02), 241.
99 Luo Y, Guo H, Guo J. Ironmaking & Steelmaking, 2018, 46(7), 698.
100 Ning A, Gao R, Yue S, et al. Materials Research Express, 2020, 8(1), 016503.
101 Bardelcik A, Salisbury C P, Winkler S, et al. International Journal of Impact Engineering, 2010, 37(6), 694.
102 Qin Y F, Luo X Y, Zheng L S. Hot Working Technology, 2013, 42(12), 229 (in Chinese).
秦宇飞, 罗湘燕, 郑立胜. 热加工工艺, 2013, 42(12), 229.
103 Xu L J, Li Z, Wei S Z. Heat Treatment of Metals, 2016, 41(05), 6 (in Chinese).
徐流杰, 李洲, 魏世忠. 金属热处理, 2016, 41(05), 6.
104 Wang H, Hong D, Hou L, et al. Materials Chemistry and Physics, 2020, 255, 123554.
105 Peng H, Hu L, Li L, et al. Journal of Alloys and Compounds, 2018, 740, 766.
106 Hossain R, Pahlevani F, Sahajwalla V. Materials Characterization, 2019, 149, 239.
107 Abbasi E, Luo Q, Owens D. Acta Metallurgica Sinica (English Letters), 2019, 32(1), 74.
108 Liu B, Qin T, Xu W, et al. Materials, 2019, 12(22), 3714.
109 Peng H, Hu L, Zhang X, et al. Metallurgical and Materials Transactions A, 2019, 50(2), 874.
110 Pan Y, Pi Z, Liu B, et al. Materials Science and Engineering A, 2020, 787, 139480.
111 Zhong X Y, Wang G C, Jiang Y H, et al. Materials China, 2019, 38(12), 1145 (in Chinese).
种晓宇, 汪广驰, 蒋业华, 等. 中国材料进展, 2019, 38(12), 1145.
112 Zheng Y. First-principles study of stability and mechanical property of MC and M2C in high speed steel. Master’s Thesis, Southeast University, China, 2018 (in Chinese).
郑勇. 高速钢中MC和M2C的稳定性和力学性能的第一性原理研究, 硕士学位论文, 东南大学, 2018.
113 Gang X P. Mechanical properties and stability of Y/Nb carbide hard phase in high speed steel are studied in the first principles. Master’s Thesis, Kunming University of Science and Technology, China, 2014 (in Chinese).
高旭鹏. 第一性原理研究高速钢中Y/Nb碳化物硬质相的力学性能及稳定性. 硕士学位论文, 昆明理工大学, 2014.
114 Xiao P, Gao Y, Yang C, et al. Journal of Alloys and Compounds, 2022, 902, 163859.
115 Wu L Z. Hebei Metallurgy, 2015(11), 1 (in Chinese).
吴立志. 河北冶金, 2015(11), 1.
116 Liang H Y, Chen L, Dan Q, et al. Tool Engineering, 2017, 51(10), 109 (in Chinese).
梁红樱, 陈伦, 但秦, 等. 工具技术, 2017, 51(10), 109.
117 Li W. Design and analysis of impeller blade. Master’s Thesis, Jilin University, China, 2007 (in Chinese).
李微. 抛丸机叶片的设计及分析. 硕士学位论文, 吉林大学, 2007.
118 Li M M. Research on high chromium cast iron used for blade of shot blasting machine. Master’s Thesis, Shandong University, China, 2014 (in Chinese).
李猛猛. 抛丸机叶片用高铬铸铁材质探究. 硕士学位论文, 山东大学, 2014.
119 Wang S R, Li Z D, Su J M, et al. China Foundry Equipment and Technology, 2015(05), 25 (in Chinese).
王守仁, 李振东, 苏建民, 等. 中国铸造装备与技术, 2015(05), 25.
120 Kang Y. Shanxi Metallurgy, 2014, 37(05), 101 (in Chinese).
康阳. 山西冶金, 2014, 37(05), 101.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed