Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 20080061-7    https://doi.org/10.11896/cldb.20080061
  高分子与聚合物基复合材料 |
防冰材料研究进展
刘晨1, 丁德一2, 李逸辰2, 姚东东1, 李天宇2, 郑亚萍1,*
1 西北工业大学化学与化工学院,西安 710129
2 西北工业大学伦敦玛丽女王工程学院, 西安 710129
Research Progress of Anti-icing Materials
LIU Chen1, DING Deyi2, LI Yichen2, YAO Dongdong1, LI Tianyu2, ZHENG Yaping1,*
1 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
2 Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710129, China
下载:  全 文 ( PDF ) ( 19840KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 结冰是生活中一种很普遍的自然现象,然而冰的积聚会对人类的生产生活、交通运输、航空航天等方面产生一系列不良的影响,轻则引起经济损失,重则造成安全事故。传统的除冰方式主要包括机械除冰、热力除冰、化学除冰等,存在高能耗、高污染、高成本、低效率等问题。近些年,开发具有防冰性能的材料已经成为研究热点。受荷叶、猪笼草等生物的启发,人们仿生出超疏水型涂层、润滑型涂层来防止材料表面结冰。此外,通过对酷寒地带生物的研究,人们探索了抗冻蛋白的防冰机制,这为仿生防冰高分子材料的开发提供了新的思路。本文首先对防冰材料的防冰机理和性能要求,以及冰粘附强度的测试装置进行了基础性介绍,并对当前研究的超疏水型涂层、润滑型涂层、抗冻蛋白、应力局部化涂层等防冰材料在防冰、疏冰领域应用的优势和存在的问题进行了分析讨论,最后展望了防冰材料的应用前景和发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晨
丁德一
李逸辰
姚东东
李天宇
郑亚萍
关键词:  防冰  除冰  超疏水涂层  润滑型涂层  抗冻蛋白  冰的粘附强度  仿生材料    
Abstract: Icing is a quite common natural phenomenon in our daily life. However, undesired ice accretion causes a series of adverse effects on indivi-dual and public activities, and sometimes paralyzes traffic and transportation system, or even power generation and supply system, resulting in enormous economic losses and safety issues. Traditional methods for solving icing problem are based on active processes, mainly including mechanical deicing, heating, chemical treatment, etc. And these strategies are either time consuming, environmentally hazardous, costly or inefficient. In the last decade, designing and deploying materials that can assist the removal of ice have received growing interests. Inspired by creatures such as lotus leaves and pitcher plants, people have created superhydrophobic coatings and slippery liquid-infused porous surfaces (SLIPSs) to prevent freezing behavior on the surface of materials. In addition, the anti-icing mechanism of antifreeze proteins have been explored by studying organisms in the cold zone, which paves a new approach for the novel design of biomimetic anti-icing polymer materials. In this review, we firstly give a fundamental introduction on the mechanism and performance requirements of anti-icing materials, as well as the apparatus for testing the ice adhesion strength. Then we discuss the advantages and drawbacks of currently existing anti-icing surfaces, e.g. superhydrophobic coatings, lubricating coatings, antifreeze proteins and stress-localized surfaces. Finally, we share our prospective views on potential applications and future development trends of artificial anti-icing materials.
Key words:  anti-icing    deicing    superhydrophobic coating    lubricating coating    antifreeze protein    ice adhesion strength    biomimetic material
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  G353.11  
基金资助: 航空科学基金(2018ZF53);陕西省教育厅大学生创新创业训练计划项目(S202010699377)
通讯作者:  *zhengyp@nwpu.edu.cn   
作者简介:  刘晨,2019年6月毕业于西北工业大学,获得工学学士学位。现为西北工业大学化学与化工学院硕士研究生,在郑亚萍教授的指导下进行研究。目前主要研究领域为PDMS基防除冰涂层。郑亚萍,西北工业大学化学与化工学院教授、博士研究生导师。1992年于武汉理工大学获复合材料学专业学士学位,1996年于西北工业大学获材料学专业硕士学位并留校从事科研教学工作,2001年于西北工业大学获得材料学博士学位。2002年赴加拿大The New Brunswick University任为期半年的访问学者;2006年赴美国Cornell University与G.P.Emmanuel教授进行为期一年的合作研究。主要从事无溶剂纳米流体、高分子树脂合成及纳米复合材料的研究等方面的研究,主持完成国家自然基金2项、航空基金1项。另外,还主持完成西安天元化工材料有限公司等单位委托的横向课题数项。发表论文110篇,被SCI收录78篇,被他引400余次。获授权发明专利5项。
引用本文:    
刘晨, 丁德一, 李逸辰, 姚东东, 李天宇, 郑亚萍. 防冰材料研究进展[J]. 材料导报, 2022, 36(16): 20080061-7.
LIU Chen, DING Deyi, LI Yichen, YAO Dongdong, LI Tianyu, ZHENG Yaping. Research Progress of Anti-icing Materials. Materials Reports, 2022, 36(16): 20080061-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080061  或          http://www.mater-rep.com/CN/Y2022/V36/I16/20080061
1 Zhou B, Gu L, Ding Y, et.al. Bulletin of the American Meteorological Society, 2011, 92(1), 47.
2 Andrey J, Olley R. Climatological Bulletin, 1990, 24, 123.
3 Andersson A K, Chapman L. Accident Analysis and Prevention, 2011, 43(1), 284.
4 Guo P, Feng Y X, Meng X C, et.al. Materials Reports, 2020, 34(6), 6062(in Chinese).
郭鹏, 冯云霞, 孟献春, 等. 材料导报, 2020, 34(6), 6062.
5 Politovich M K, Bernstein T. Journal of Applied Meteorology, 2002, 41(2), 118.
6 Zhang W L, Yu Y Q, Su Z Y, et.al. Electricity, 2008,19(4), 47.
7 Parent O, Ilinca A. Cold Regions Science and Technology, 2011,65(1), 88.
8 Wen M, Yang S, Kumar A, et al. Monthly Weather Review, 2009,137(3), 1111.
9 Tian S Q. Electric Power Equipment Management, 2021(2), 26(in Chinese).
田思奇.电力设备管理, 2021(2), 26.
10 Wang L F, He Z D. China Aviation News, 2018(4),6(in Chinese).
王莉芳, 何舟东. 中国航空报, 2018(4),6.
11 Raraty L E, Tabor D. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 1958, 245(1241), 184.
12 Lyu J Y, Song Y L, Jiang L, et al. ACS Nano, 2014, 8(4), 3152.
13 Irajizad P, Al-Bayati A, Eslami B, et al. Materials Horizons, 2019, 6(4), 758.
14 Wang Y, Yao X, Wu S, et al. Advanced Materials, 2017, 29(26), 1700865.
15 Cheng S M, Guo P, Heng L P. Acta Polymerica Sinica, 2020,51(5), 530(in Chinese).
程舒曼, 郭璞, 衡利萍. 高分子学报, 2020,51(5), 530.
16 Gao Y L, Dai K M, Huang L, et al. Materials Reports, 2017, 31(1), 103(in Chinese).
高英力, 代凯明, 黄亮, 等. 材料导报, 2017, 31(1), 103.
17 Yan Y D. The micro-nano structure design of novel superhydrophobic coatings and their anti-icing and icephobic properties. Master's Thesis, Zhejiang University, China, 2014(in Chinese).
阎映弟. 新型超疏水涂层的微纳结构设计及其表面防覆冰作用. 硕士学位论文, 浙江大学, 2014.
18 Chen Y, Liu G, Jiang L, et al. Chinese Physics B, 2017, 26(4), 046801.
19 Lyu J Y, Wang J J. Coatings Technology and Abstracts, 2014, 35(8), 37(in Chinese).
吕健勇, 王健君. 涂料技术与文摘, 2014, 35(8), 37.
20 Wong T S, Kang S H, Tang S K Y, et al. Nature, 2011, 477(7365), 443.
21 Liu Y, Tian Y, Chen J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588, 124384.
22 Rykaczewski K, Anand S, Subramanyam S B, et al. Langmuir, 2013, 29(17), 5230.
23 Wang F, Ding W, He J, et al. Chemical Engineering Journal, 2019, 360, 243.
24 Cheng A L, Merz K M. Biophysical Journal, 1997, 73(6), 2851.
25 Tomczak M M, Hincha D K, Estrada S D, et al. Biophysical Journal, 2002, 82(2), 874.
26 Wierzbicki A, Taylor M S, Knight C A, et al. Biophysical Journal, 1996, 71(1), 8.
27 Lyu J Y, He Z Y, Wang J J. Acta Polymerica Sinica, 2017(12), 1870(in Chinese).
吕健勇, 贺志远, 王健君. 高分子学报, 2017(12), 1870.
28 Duman J G, Walters K R, Sformo T, et al. Annual Review of Physiology, 2001, 63(1), 327.
29 Liu K, Wang C, Ma J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51), 14739.
30 Meister K, Ebbinghaus S, Xu Y, et al. Proceedings of the National Aca-demy of Sciences of the United States of America, 2013, 110(5), 1617.
31 Bai G, Gao D, Liu Z, et al. Nature, 2019, 576(7787), 437.
32 Guo H S, Liu M, Xie C H, et al. Chemical Engineering Journal, 2020, 402, 126161.
33 Wang D C, Xin Y Y, Li X Q, et al. Progress In Chemistry, 2020, DOI:10.7536/PC200902.
34 Yi H K, Jiang Q C. Measurement Science and Technology, 2021, 32(3), 035117.
35 Paul S, Lee D, Kim K, et al. Mechanical Systems and Signal Processing, 2020,151, 107369.
36 Zhou F, Zhu J, An N, et al. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(4), 593.
37 Wei K, Yang Y, Zuo H, et al. Wind Energy, 2020, 23(3), 433.
38 Du Y, Zhou S, Jing X, et al. Mechanical Systems and Signal Processing, 2020, 141, 106445.1.
39 Nampoothiri K N, Bobji M S, Sen P. Journal of Microelectromechanical Systems, 2020, 99, 1.
40 Parent O, Ilinca A. Cold Regions Science and Technology, 2011, 65(1), 88.
41 Chen L, Zhang Y, Liu Z, et al. Applied Thermal Engineering, 2020, 177, 115488.
42 Lyu X, Guan J, Wang S, et al. International Journal of Aerospace Engineering, 2020, 2020, 1902053.
43 Khadak A, Subeshan B, Asmatulu R. Materials Science, 2021, 56(4), 3078.
44 Wang S J. Research on ship ice accumulation prediction model in polar waters. Master's Thesis, Dalian University of Technology, China, 2018(in Chinese).
汪仕靖. 极地航区船舶积冰预报模型研究. 硕士学位论文, 大连理工大学, 2018.
45 Ma N. Dam and Safety, 2019(1), 66(in Chinese).
马宁. 大坝与安全, 2019(1), 66.
46 Miao Y L. Modern Mining, 2016, 32(5), 234(in Chinese).
苗耀龙. 现代矿业. 2016, 32(5), 234.
47 Geng D H, Jiang P C. New Technology and New Products of China, 2016(14), 9(in Chinese).
耿德华, 蒋鹏程. 中国新技术新产品, 2016(14), 9.
[1] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[2] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[3] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed