Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22070159-7    https://doi.org/10.11896/cldb.22070159
  高分子与聚合物基复合材料 |
柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性
苏秉尧1,2, 王斌1,2,*, 侯林伟1,2, 王恒1,2, 赵建伟1,2, 贺辛亥1,2,*, 袁亚蓉1
1 西安工程大学材料工程学院,西安 710048
2 西安市纺织复合材料重点实验室,西安 710048
Electromagnetic Shielding and Sensing Characteristics of Flexible Carbon/Melamine Composite Foams
SU Bingyao1,2, WANG Bin1,2,*, HOU Linwei1,2, WANG Heng1,2, ZHAO Jianwei1,2, HE Xinhai1,2,*, YUAN Yarong1
1 School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
2 Xi'an Key Laboratory of Textile Composites, Xi'an 710048, China
下载:  全 文 ( PDF ) ( 11807KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 智能可穿戴设备不断发展,对柔性传感与电磁屏蔽提出了更高的要求。以三聚氰胺泡沫为基底,通过一种低成本、短周期的浸渍-化学镀镍工艺,将纳米碳质颗粒等物质包覆于三聚氰胺泡沫骨架,制备了兼具电磁屏蔽与柔性传感的复合泡沫材料。采用扫描电子显微镜(SEM)、万能试验机、电化学工作站和矢量网络分析仪研究了碳/三聚氰胺复合泡沫的微观结构、循环压缩、应力传感特性及电磁屏蔽效能。结果表明,碳/三聚氰胺复合泡沫呈三维开孔网状结构,压缩韧性良好;镀镍后,复合泡沫的最大应力为2.75 MPa,循环压缩前两圈吸收能量为22.17 MJ·cm-3。碳/三聚氰胺复合泡沫呈压阻式传感特性,在低应力区传感准确性良好,测试范围较宽,灵敏度为(0.62±0.06) kPa-1;镀镍后,响应电流增大,复合泡沫在高应力区传感准确性良好,灵敏度为(3.38±1.0) kPa-1。碳/三聚氰胺复合泡沫的电磁屏蔽以吸收屏蔽效能为主。镀镍前,电磁屏蔽效能与密度呈正相关,当密度为0.168 g·cm-3时,复合泡沫的比电磁屏蔽值最优,为182.86 dB·cm3·g-1;镀镍后,复合泡沫的绝对电磁屏蔽值最佳,为178.61 dB·cm2·g-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏秉尧
王斌
侯林伟
王恒
赵建伟
贺辛亥
袁亚蓉
关键词:  柔性  复合泡沫  循环压缩  应力传感  电磁屏蔽    
Abstract: With the development of smart wearable devices, flexible sensing and electromagnetic shielding were put forward higher requirement. Melamine foams were used as substrate, and their skeleton were then coated with carbon nanoparticles. Carbon/melamine composite foams with flexible sensing and electromagnetic shielding, were then prepared by such low-cost, short cycle process of infiltration and electroless nickel plating. Microstructure, cyclic compression, stress sensing and electromagnetic shielding properties of composite foams, were investigated by SEM, universal testing machine, electrochemical workstation and vector network analyzer, respectively. Results showed that carbon/melamine composite foams had tiny open cells and three-dimensional reticular structure, exhibited good compressive toughness. Its maximum stress is 2.75 MPa, and absorbed energy of cyclic compression is 22.17 MJ·cm-3 during first two cycles after electroless nickel plating. Carbon/melamine composite foams presented piezoresistive sensing characteristics, with sensitivity of (0.62±0.06) kPa-1 under different external load in low stress range. They also showed good sensing accuracy, and wide testing range. While after electroless nickel plating, composite foams exhibited good sensing accuracy in high stress range, with increasing response current, and showed sensitivity of (3.38±1.0) kPa-1. Electromagnetic shielding was dominated by absorption shielding effectiveness for composite foams. It showed positive correlation with densities before electroless nickel plating. Specific electromagnetic shielding value of composite foams reached maximum (182.86 dB·cm3·g-1) at the density of 0.168 g·cm-3. The optimal value of SSET was 178.61 dB·cm2·g-1 after electroless nickel plating.
Key words:  flexible    composite foam    cyclic compression    stress sensing    electromagnetic shielding
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TB332  
基金资助: 陕西省教育厅重点科学研究计划协同创新中心项目(20JY027);陕西省科技厅重点研发计划项目(2020NY-154);陕西省留学人员科技活动择优资助项目(2021014)
通讯作者:  *王斌,西安工程大学材料工程学院副教授、硕士研究生导师,材料工程学院第二届教授委员会委员。于2004年和2007年毕业于西安理工大学材料科学与工程学院,分别获学士学位和工学硕士学位;2014年毕业于西北工业大学材料学院,获工学博士学位。2015年就职于西安工程大学,从事教学科研工作至今。2017年国家公派赴美国UNT访学。现主要研究领域为柔性碳泡沫复合材料、纺织结构复合材料,近年来发表SCI/ EI论文10余篇,授权专利3项。 wangbin_1120@163.com
贺辛亥,西安工程大学材料工程学院教授、博士研究生导师,陕西秦创原纺织结构复合材料“科学家+工程师”队伍首席科学家。1994年毕业于西北工业大学,获学士学位,后就职于西安工程大学,从事教学科研工作至今,历任讲师、副教授和教授;于2007年获西安工程大学工学硕士学位,2012年获西北工业大学机电学院工学博士学位。现主要研究领域为纺织结构复合材料、遗态功能复合材料等,近年来发表学术论文80余篇,授权专利20余项。 hexinhai@xpu.edu.cn   
作者简介:  苏秉尧,2019年毕业于杭州电子科技大学信息工程学院,获学士学位。现为西安工程大学材料工程学院硕士研究生,在王斌副教授的指导下进行研究。目前主要研究领域为柔性碳基复合材料。
引用本文:    
苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
SU Bingyao, WANG Bin, HOU Linwei, WANG Heng, ZHAO Jianwei, HE Xinhai, YUAN Yarong. Electromagnetic Shielding and Sensing Characteristics of Flexible Carbon/Melamine Composite Foams. Materials Reports, 2024, 38(5): 22070159-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070159  或          https://www.mater-rep.com/CN/Y2024/V38/I5/22070159
1 Tian Y Z. Environmental Science and Management, 2021, 46(11), 137 (in Chinese).
田义宗. 环境科学与管理, 2021, 46(11), 137.
2 Li J, Liu L L, Shen Z Y, et al. Journal of Functional Materials, 2021, 52(11), 11001(in Chinese).
李均, 刘璐璐, 沈振宇, 等. 功能材料, 2021, 52(11), 11001.
3 Zhang K, Wu L F, Gui T J, et al. Materials Reports, 2021, 35(S2), 513 (in Chinese).
张凯, 吴连锋, 桂泰江, 等. 材料导报, 2021, 35(S2), 513.
4 Zhang T Y, Song B Q, Li X F, et al. Journal of Functional Materials, 2023, 54(9), 9080(in Chinese).
张天一, 宋柏青, 李欣峰, 等. 功能材料, 2023, 54(9), 9080.
5 Li Z J, Liu S Y, Wang G Y, et al. Chinese Journal of Synthetic Chemistry, 2019, 27(2), 149 (in Chinese).
李子健, 刘绍英, 王公应, 等. 合成化学, 2019, 27(2), 149.
6 Jing R X. Study on the preparation and electrochemical performance of flexible carbon foam and its composites. Master's Thesis, Xi'an University of Technology, China, 2021 (in Chinese).
井蕊璇. 柔性泡沫炭及其复合材料的制备与电化学性能研究. 硕士学位论文, 西安理工大学, 2021.
7 Wang W K. Preparation of melamine-based carbon foam and its electromagnetic shielding properties. Master's Thesis, University of Science and Technology Liaoning, China, 2021 (in Chinese).
王玮开. 三聚氰胺基炭泡沫的制备及电磁屏蔽性能研究. 硕士学位论文, 辽宁科技大学, 2021.
8 Qu Z C. Study on the synthesis and properties of the electrode materials based on carbonized melamine foam and its composite. Master's Thesis, Jiangsu University of Science and Technology, China, 2018 (in Chinese).
屈志超. 三聚氰胺碳泡沫及其复合材料的制备与电化学性能的研究. 硕士学位论文, 江苏科技大学, 2018.
9 Feng Y, Cao M, Yang L, et al. Journal of Electroanalytical Chemistry, 2018, 823, 633.
10 Sun Y M, Yi R H, Duan J Q, et al. Materials Reports, 2021, 35(16), 16001(in Chinese).
孙义民, 易荣华, 段纪青, 等. 材料导报, 2021, 35(16), 16001.
11 Li J, Bao J J. Polymer Materials Science & Engineering, 2020, 36(7), 163 (in Chinese).
李洁, 包建军. 高分子材料科学与工程, 2020, 36(7), 163.
12 Fang X, Tan J, Gao Y L, et al. Nanoscale, 2017, 9(45), 17948.
13 Wang B, Luo X Y, Wang C, et al. Materials Reports, 2020, 34(18), 18159 (in Chinese).
王斌, 罗晓宇, 王琛, 等. 材料导报, 2020, 34(18), 18159.
14 Nyström G, Marais A, Karabulut E, et al. Nature Communications, 2015, 6(1), 1.
15 Liu X, Zou S, Liu K, et al. Journal of Power Sources, 2018, 384, 214.
16 Tian M. Preparation and properties of highly elastic conductive carbon sponge. Master's Thesis, Xi'an University of Technology, China, 2021 (in Chinese).
田梦. 高弹性导电碳海绵的制备及性能研究. 硕士学位论文, 西安理工大学, 2021.
17 Wang L J, Zhang Y, Wang Z W. Journal of Vibration and Shock, 2015, 34(5), 44 (in Chinese).
王立军, 张岩, 王志伟. 振动与冲击, 2015, 34(5), 44.
18 Wang B. Preparation and properties of carbon foam and C/C-carbon foam combinational materials. Ph. D. Thesis, Northwestern Polytechnical University, China, 2014 (in Chinese).
王斌. 炭泡沫及C/C-炭泡沫组合材料的制备与性能研究. 博士学位论文, 西北工业大学, 2014.
19 Stejskal J, Pekárek M, Trchová M, et al. Journal of Applied Polymer Science, 2022, 139(20), 52156.
20 Yap L W, Shi Q Q, Gong S, et al. Inorganic Chemistry Communications, 2019, 104, 98.
21 Liu W, Liu N, Yue Y, et al. Journal of Materials Chemistry C, 2018, 6(6), 1451.
22 Ding Y, Yang J, Tolle C R, et al. ACS Applied Materials & Interfaces, 2018, 10(18), 16077.
23 Lu Q Y. The electrochemiluminescence sensor for detecting phenolic compounds, dopamine and melamine based on new luminophores materials. Master's Thesis, Southwest University, China, 2016 (in Chinese).
卢齐依. 基于新型电致化学发光材料构建酚类、多巴胺和三聚氰胺传感器的研究. 硕士学位论文, 西南大学, 2016.
24 Fragkogiannis C, Koutsioukis A, Georgakilas V. Molecules, 2022, 27(11), 3530.
25 Xi J B. Carbon-based materials for high performance electromagnetic interference shielding and microwave absorption. Ph. D. Thesis, Zhejiang University, China, 2018 (in Chinese).
席嘉彬. 高性能碳基电磁屏蔽及吸波材料的研究. 博士学位论文, 浙江大学, 2018.
26 Lee T W, Lee S E, Jeong Y G. ACS Applied Materials & Interfaces, 2016, 8(20), 13123.
27 Xing D, Lu L, Tang W, et al. Materials Letters, 2017, 207, 165.
28 Chen Y, Wang Y, Zhang H B, et al. Carbon, 2015, 82, 67.
29 Shahzad F, Alhabeb M, Hatter C B, et al. Science, 2016, 353(6304), 1137.
30 Saini P, Choudhary V, Singh B P, et al. Materials Chemistry and Phy-sics, 2009, 113(2-3), 919.
[1] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 解伟荣, 周涵. 柔性电响应动态热辐射调控材料研究进展[J]. 材料导报, 2025, 39(1): 24110064-8.
[4] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[5] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[6] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[7] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[8] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[9] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[10] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[11] 曾杨武, 庄俊城, 杨楠. 可实现逻辑运算的柔性电路[J]. 材料导报, 2024, 38(24): 23070218-5.
[12] 谭海星, 林剑荣, 黄培源, 彭憬怡, 刘思, 陈建文, 徐华, 肖鹏. 柔性氧化物薄膜晶体管栅绝缘层的研究进展[J]. 材料导报, 2024, 38(23): 23050204-9.
[13] 吴菁, 李佳, 黄金华, 宋伟杰, 谭瑞琴. 聚合物分散液晶器件概述、发展趋势及应用研究进展[J]. 材料导报, 2024, 38(21): 23010078-8.
[14] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[15] 曾剑涛, 王勇, 江国权, 张元祥. 柔性三维力传感器的研究进展[J]. 材料导报, 2024, 38(15): 23100147-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed