Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22080230-6    https://doi.org/10.11896/cldb.22080230
  无机非金属及其复合材料 |
基于硅溶胶形核剂的柔性二氧化硅气凝胶的研究
王丽丽, 唐杰, 秦陆洋, 李雪莎, 聂朝胤*
西南大学材料与能源学院,重庆 400715
Study on Flexible Silica Aerogel Based on Silica Sol Nucleating Agent
WANG Lili, TANG Jie, QIN Luyang, LI Xuesha, NIE Chaoyin*
School of Materials and Energy, Southwest University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 17360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性二氧化硅气凝胶具有优异的柔韧性,解决了二氧化硅气凝胶易破碎、成形性差的问题,受到了广泛的关注。但是柔性二氧化硅气凝胶的骨架大多呈珍珠链状的脆弱连接,交联程度低,导致其力学性能较差。本工作在甲基三乙氧基硅烷、二甲基二乙氧基硅烷双前驱体体系中引入硅溶胶,利用硅溶胶中纳米SiO2粒子提高形核密度,细化二次粒子尺寸,同时利用其表面富含的-OH基团为两种前驱体的水解产物提供大量的缩合位点,提高气凝胶的交联程度。结果表明,与未加入硅溶胶的双前驱体气凝胶相比,加入硅溶胶的气凝胶二次粒子由光滑的球形颗粒转变为细小的不规则形貌颗粒,平均尺寸由3.80 μm减小为0.36 μm。同时细小颗粒间的连接更加紧密,避免了球形粒子间的“颈缩”式弱连接。制备的柔性二氧化硅气凝胶可承受的压缩量达80%,卸载后其形貌可以完全恢复,并且可以承受20次以上应变为60%的循环压缩及50次以上的有机污染物循环吸附,具有良好的循环压缩性能和循环吸附性能。柔性二氧化硅气凝胶显示出优异的疏水性(表面接触角高达162.4°)与有机污染物吸附性能(对正己烷的吸附量为9.57 g/g)。同时,本柔性二氧化硅气凝胶还具有良好的热稳定性,在干燥空气环境下的最大降解速度对应的温度可达501.2 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丽丽
唐杰
秦陆洋
李雪莎
聂朝胤
关键词:  疏水性  柔性气凝胶  油水分离  硅溶胶    
Abstract: Flexible silica aerogels having excellent flexibility, which solves the problems of easy breakage and poor formability, have received extensive attention. However, most flexible aerogels’ skeletons show fragile connections like pearl chains with a low cross-linking degree, which results in poor mechanical properties. In this paper, silica sol is introduced into the dual precursor system of methyltriethoxysilane and dimethyldiethoxysilane. Because of large amounts of-OH groups on nano-SiO2 particles in silica sol, a large number of nucleation sites were provided during the gel process, thus enhancing the crosslinking degree of aerogels and refining the size of secondary particles. The results show that compared with the aerogel without silica sol, the aerogel secondary particles with silica sol change from smooth spherical to fine irregular, and the average size decreases from 3.80 μm to 0.36 μm. The connection between the fine particles is tighter, which avoids the "necked" weak connection between spherical particles. The flexible silica aerogel prepared in this paper can withstand 80% compression and its morphology can be completely recovered after unloading. It can withstand more than 20 cyclic compressions with a strain of 60% and more than 50 cyclic adsorptions of organic pollutants. It also has good cyclic compression performance and cyclic adsorption performance. The flexible silica aerogel shows excellent hydrophobicity (surface contact angle up to 162.4°) and adsorption performance of organic pollutants (the adsorption capacity of n-hexane is 9.57 g/g). The flexible silica aerogel also has good thermal stability, and the maximum degradation rate temperature can reach 501.2 ℃ in a dry air environment.
Key words:  hydrophobic    flexible aerogel    oil-water separation    silica sol
发布日期:  2023-12-19
ZTFLH:  0648  
通讯作者:  *聂朝胤,西南大学材料与能源学院教授、博士研究生导师。1985年获东南大学机械工程专业学士学位,1991年获电子科技大学电子机械专业硕士学位,2000年获日本大阪大学工学部工学博士学位。目前主要从事PVD、CVD、电沉积等涂层材料和功能气凝胶及其纳米复合材料等方面的研究。发表学术论文100余篇,包括RSC Advances、Surface and Coatings Technology、Functional Materials Letters、Advanced Materials Research等。申请与授权国家发明专利8项,主持国家自然科学基金及教育部留学基金等项目10余项。niecy@swu.edu.cn   
作者简介:  王丽丽,2020年8月于哈尔滨工程大学获得工学学士学位。现为西南大学材料与能源学院硕士研究生,在聂朝胤教授的指导下进行研究。目前主要研究领域为气凝胶及其纳米复合材料。
引用本文:    
王丽丽, 唐杰, 秦陆洋, 李雪莎, 聂朝胤. 基于硅溶胶形核剂的柔性二氧化硅气凝胶的研究[J]. 材料导报, 2023, 37(24): 22080230-6.
WANG Lili, TANG Jie, QIN Luyang, LI Xuesha, NIE Chaoyin. Study on Flexible Silica Aerogel Based on Silica Sol Nucleating Agent. Materials Reports, 2023, 37(24): 22080230-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080230  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22080230
1 Zhang F, Su D, He J, et al. Materials Letters, 2019, 238, 202.
2 Feng J, Le D, Nguyen S T, et al. Colloids and Surfaces A:Physicoche-mical and Engineering Aspects, 2016, 506, 298.
3 Hung W C, Horng R S, Shia R E. Journal of Sol-Gel Science and Technology, 2021, 97(2), 414.
4 Yu Z L, Yang N. Angewandte Chemie-International Edition, 2018, 57(17), 4538.
5 Han H, Wei W, Jiang Z, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 509, 539.
6 Valo H, Arola S, Laaksonen P, et al. European Journal of Pharmaceutical Sciences, 2013, 50(1), 69.
7 Wang X, Dou L, Yang L, Yu J, Ding B, et al. Journal of Hazardous Materials, 2017, 324, 203.
8 Qiu B, Xing M, Zhang J, et al. Journal of the American Chemical Society, 2014, 136(16), 5852.
9 Yeon K, Dinesh L, Vinayak B M, et al. Journal of the Korean Ceramic Society, 2020, 57(1), 1.
10 Li L, Yalcin B, Nguyen B N, et al. ACS Applied Materials & Interfaces, 2009, 1(11), 2491.
11 Guo X, Shan J, Lai Z, et al. Molecules, 2018, 23(4).
12 Zhang Y, Shen Q, Li X, et al. RSC Advances, 2020, 10(69), 42297.
13 Yu Y, Wu X, Guo D, Fang J, et al. Journal of Materials Science, 2014, 49(22), 7715.
14 Randall J P, Meador M A B, Jana S C, et al. ACS Applied Materials & Interfaces, 2011, 3(3), 613.
15 Zu G, Kanamori K, Shimizu T, et al. Chemistry of Materials, 2018, 30(8), 2759.
16 Kanamori B K, Aizawa M, Nakanishi K, et al. Advanced Materials, 2010, 19(12), 1589.
17 Guo X, Yu H, Yang H, et al. Journal of Porous Materials, 2013, 20(6), 1477.
18 Guo X, Li W, Yang H, et al. Journal of Sol Gel Science & Technology, 2013, 406.
19 Ilharco L M, Fidalgo A, Farinha P S, et al. Journal of Materials Chemistry, DOI:10. 1039/b703631k.
20 Fidalgo A, Farinha J P S, Martinho J M G, et al. Chemistry of Materials, 2007, 19(10), 2603.
21 Li M, Jiang H, Xu D, et al. Journal of Non-Crystalline Solids, 2016, 452, 187.
22 Li Z, Cheng X, He S, et al. Composites Part A:Applied Science and Manufacturing, 2016, 84, 316.
23 Zhang Y, Shen Q, Li X, et al. Materials Chemistry Frontiers, DOI:10. 1039/D1QM00206F.
24 Mu L, Yang S, Hao B, et al. Polymer Chemistry, 2015, 6(32), 5869.
25 He X, Tang B, Cheng X, et al. Journal of Colloid and Interface Science, 2021, 600, 764.
26 Gao H, Bo L, Liu P, et al. Solar Energy Materials and Solar Cells, 2019, 201, 110122.
27 Wang L, Song G, Qiao X, et al. Langmuir, 2019, 35(26), 8692.
28 Temnikov M N, Kononevich Y N, Popov A Y, et al. ChemistrySelect, 2020, 5(17), 5014.
29 Shao Z, He X, Cheng X, et al. Materials Letters, 2017, 204, 93.
30 Luo Z, Li D, Huang L, et al. Journal of Materials Science, 2020, 55(27), 12884.
31 Guan L Z, Gao J F, Pei Y B, et al. Carbon, 2016, 107, 573.
32 Chen D, Wang D, et al. Acs Applied Materials & Interfaces, DOI: 10. 1021/acsami. 6b02829.
33 Nabipour H, Nie S, Wang X, et al. Cellulose, 2020, 27(4), 2237.
34 Zou L, Phule A D, Sun Y, et al. Polymer Testing, 2020, 85, 106451.
35 Lang X H, Zhu T Y, Zou L, et al. Progress in Organic Coatings, 2019, 137, 105370.
36 Mazrouei-Sebdani Z, Salimian S, Khoddami A, et al. Materials Research Express, 2019, 6(8), 1591.
[1] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[2] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[3] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[4] 范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 聚合氯化铝原位改性聚氨酯泡沫用于油水分离[J]. 材料导报, 2022, 36(9): 21040138-7.
[5] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[6] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[7] 师建军, 王伟, 朱伟, 梁科, 孔磊, 杨云华, 朱世鹏, 张莹, 李宇. 柔性气凝胶材料的制备及应用研究进展[J]. 材料导报, 2022, 36(22): 22040393-9.
[8] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[9] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[10] 徐卓凡, 彭舒廷, 周鹤, 郭媛媛, 周国富, 徐雪珠. 含氟高分子涂料的合成及电润湿性能研究进展[J]. 材料导报, 2022, 36(16): 20110218-15.
[11] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[12] 成晨, 赵燕. 柴油乳化水分离材料的研究进展[J]. 材料导报, 2021, 35(Z1): 536-540.
[13] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[14] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[15] 杨福生, 张振宇, 李云清, 陈永哲, 任永忠, 马乐, 杨武. 层层自组装法制备超疏水/超亲油棉织物及其油水分离性能[J]. 材料导报, 2021, 35(12): 12190-12195.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed