Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22090127-11    https://doi.org/10.11896/cldb.22090127
  无机非金属及其复合材料 |
高熵氧化物合成及催化应用的研究进展
游子娟1, 陈汉林2,*
1 广东石油化工学院化学学院,广东 茂名 525000
2 广东石油化工学院环境科学与工程学院,广东 茂名 525000
Research Progress in Synthesis and Catalytic Application of High Entropy Oxides
YOU Zijuan1, CHEN Hanlin2,*
1 College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
2 College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
下载:  全 文 ( PDF ) ( 24294KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵氧化物(High entropy oxides,HEOs)作为近几年发展起来的由五种及以上氧化物以等物质的量或近等物质的量构成的新型氧化物体系,因具有简单的结构和优异的性能等而受到国内外研究人员的广泛关注。高熵氧化物主要有岩盐型、萤石型、尖晶石型或钙钛矿等固溶体结构,在催化领域(包括热催化、电催化和光催化)有十分广阔的应用前景。本工作介绍了国内外高熵氧化物的制备方法,主要包括固相法、火焰喷雾和喷雾热解法、湿化学法和溶液燃烧合成法等,并比较了各方法的优缺点,还简述了HEOs的主要表征手段;归纳了高熵氧化物在催化等方面的应用,包括热催化、电催化和光催化,并通过分析反应机理,以进一步推动这一新兴领域的发展,然后对HEOs的理论计算进行简要介绍,最后指出了高熵氧化物目前研究存在的问题,讨论了解决措施,展望了高熵氧化物未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
游子娟
陈汉林
关键词:  高熵氧化物  合成方法与表征  催化应用  理论计算    
Abstract: High entropy oxides (HEOs) are composed of five or more kinds of oxides in equal or nearly equal mole and have been widely concerned by researchers at home and abroad in recent years due to its simple structure and excellent performance. The solid solution structures of HEOs mainly included rock salt, fluorite, spinel or perovskite structure oxides, which have a very broad application prospect in the field of catalysis, such as thermocatalysis, electrocatalysis and photocatalysis. Here, the synthesize methods (e.g. solid-state reaction, nebulized spray pyrolysis, flame spray pyrolysis, wet chemical and solution combustion synthesis, etc.) are introduced and their advantages and disadvantages are also compared. In addition, the main characterization methods of HEOs are described briefly. Then, the applications of HEOs in thermocatalysis, electrocatalysis and photocatalysis are summarized. More important, the reaction mechanism is analyzed to further promote the development of this emerging field. Furthermore, the theoretical calculation of HEOs are briefly introduced. Finally, the future directions and challenging perspectives for chemical catalysis over HEOs are also put forward.
Key words:  high entropy oxides    synthesis and characterization    catalytic application    theoretical calculation
发布日期:  2023-12-19
ZTFLH:  O611  
基金资助: 国家自然科学基金(22106023);茂名市科技计划项目(2022045);广东石油化工学院人才引进项目(2020rc015)
通讯作者:  *陈汉林,广东石油化工学院环境科学与工程学院副教授、硕士研究生导师。2012年韶关学院环境工程专业本科毕业,2015年华南理工大学环境科学专业硕士毕业,2019年中国科学院广州地球化学研究所环境科学专业博士毕业。目前主要从事无机矿物材料和环境污染控制等方面的研究工作。发表论文10余篇,包括Chemical Communications、Applied Catalytic B:Environmental、Science of the Total Environmental、Catalysis Science & Technology、Applied Surface Science等。chenhanlin@gdupt.edu.cn   
作者简介:  游子娟,2008年6月、2015年6月分别于上饶师范学院和华南理工大学获得理学学士学位和硕士学位。现为广东石油化工学院化学学院分析化学实验室实验员。目前主要研究领域为无机分析化学及无机矿物材料制备。
引用本文:    
游子娟, 陈汉林. 高熵氧化物合成及催化应用的研究进展[J]. 材料导报, 2023, 37(24): 22090127-11.
YOU Zijuan, CHEN Hanlin. Research Progress in Synthesis and Catalytic Application of High Entropy Oxides. Materials Reports, 2023, 37(24): 22090127-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090127  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22090127
1 Cantor B, Chang I, Knight P, et al. Materials Science and Engineering A, 2004, 375-377, 213.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Yeh J W. European Journal of Control, 2006, 31(6), 633.
4 Yu Y, Ren Y W, Bai X Y, et al. Journal of Functional Materials and Devices, 2021, 27(1), 26 (in Chinese).
于跃, 任元文, 白雪莹, 等. 功能材料与器件学报, 2021, 27(1), 26.
5 Yao Y, Huang Z, Xie P, et al. Science, 2018, 359(6383), 1489.
6 Wang T, Chen H, Yang Z, et al. Journal of the American Chemical Society, 2020, 142, 4550.
7 Liu X, Huang J Q, Zhang Q, et al. Advanced Materials, 2017, 29(20), 1601759.
8 Rost C M, Sachet E, Borman T, et al. Nature Communications, 2015, 6, 8485.
9 Sun Y, Dai S. Science Advances, 2021, 7, eabg1600.
10 Xiang H Z, Quan F, Li W C, et al. The Chinese Journal of Process Engineering, 2020, 20(3), 245 (in Chinese).
项厚政, 权峰, 李文超, 等. 过程工程学报, 2020, 20(3), 245.
11 Xie P, Yao Y, Huang Z, et al. Nature Communications, 2019, 10(1), 4011.
12 Hussain I, Lamiel C, Ahmad M, et al. Journal of Energy Storage, 2021, 44, 103405.
13 Oses C, Toher C, Curtarolo S. Nature Reviews Materials, 2020, 5(4), 295.
14 Luo Y, Hao S, Cai S, et al. Journal of the American Chemical Society, 2020, 142(35), 15187.
15 Amiri A, Shahbazian-Yassar R. Journal of Materials Chemistry A, 2021, 9, 782.
16 Abhishek S, Qingsong W, Alexander S, et al. Advanced Materials, 2019, 31(26), 1806236.
17 Mao A, Xiang H Z, Zhang Z G, et al. Journal of Magnetism and Magnetic Materials, 2019, 484, 245.
18 Gild J, Samiee M, Braun J L, et al. Journal of the European Ceramic Society, 2018, 38, 3578.
19 Sharma Y, Musico B L, Xiang G, et al. Physical Review Materials, 2018, 2(6), 215.
20 Dabrowa J, Stygar M, Mikula A, et al. Materials Letters, 2017, 216, 32.
21 Chen H, Lin W, Zhang Z, et al. ACS Materials Letters, 2019, 1(1), 83.
22 Fracchia M, Ghigna P, Pozzi T, et al. The Journal of Physical Chemistry Letters, 2020, 11(9), 3589.
23 He S, Somayaji V, Wang M, et al. Nano Research, 2022, 15(6), 4785.
24 Jin Z, Lyu J, Zhao Y L, et al. Chemistry of Materials, 2021, 33(5), 1771.
25 Xu H, Zhang Z, Liu J, et al. Nature Communications, 2020, 11(1), 3908.
26 Yu P F, Zhang L J, Cheng H, et al. Intermetallics, 2016, 70, 82.
27 Gu Y, Bao A, Wang X, et al. Nanoscale, 2022, 14(2), 515.
28 Grätzel M. Accounts of Chemical Research, 2017, 50(3), 487.
29 Xiang H Z. Preparation and Li-storage performance of spinel-type high-entropy oxides anode materials. Master’s Thesis, Anhui University of Technology, China, 2020 (in Chinese).
项厚政. 尖晶石型高熵氧化物负极材料的制备及其储锂性能. 硕士学位论文, 安徽工业大学, 2020.
30 Messing G L, Zhang S C, Jayanthi G V. Journal of the American Ceramic Society, 2010, 76, 2707.
31 Sarkar A, Djenadic R, Usharani N J, et al. Journal of the European Ceramic Society, 2017, 37(2), 747.
32 Sarkar A, Djenadic R, Wang D, et al. Journal of the European Ceramic Society, 2017, 38(5), 2318.
33 Yang S, Zavalij P Y, Whittingham M S. Electrochemistry Communications, 2001, 3(9), 505.
34 Mnasri W, Bérardan D, Tusseau-Nenez S, et al. Journal of Materials Chemistry C, 2021, 53(11), 8074.
35 Mao A, Quan F, Xiang H Z, et al. Journal of Molecular Structure, 2019, 1194, 11.
36 Kumar A, Cross A, Manukyan K, et al. Chemical Engineering Journal, 2015, 278, 46.
37 Nersisyan H H, Lee J H, Ding J R, et al. Progress in Energy and Combustion Science, 2017, 63, 79.
38 Varma A, Mukasyan A S, Rogachev A S, et al. Chemical Reviews, 2016, 116(23), 14493.
39 Gen Wang, Jing Qin, Youyou Feng, et al. ACS Applied Materials and Interfaces, 2020, 12(40), 45155.
40 Zhang Z, Yang S, Hu X, et al. Chemistry of Materials, 2019, 31(15), 5529.
41 Riley C, Riva A, Park J, et al. ACS Applied Materials & Interfaces, 2021, 13(7), 8120.
42 Wang G, Qin J, Feng Y, et al. ACS Applied Materials & Interfaces, 2020, 12(40), 45155.
43 Park T, Javadinejad H R, Kim Y K, et al. Journal of Alloys and Compounds, 2022, 893, 162108.
44 Peng X Y. Study on field-assisted sintering of (Mg, Co, Ni, Cu, Zn)O high entropy oxides. Master’s Thesis, Southwest Jiaotong University, China, 2020 (in Chinese).
彭鑫玉. (Mg, Co, Ni, Cu, Zn)O高熵氧化物的场辅助烧结工艺研究. 硕士学位论文, 西南交通大学, 2020.
45 Okejiri F, Zhang Z, Liu J, et al. ChemSusChem, 2020, 13(1), 111.
46 Shaw S, Gangwar A, Sharma A, et al. Journal of Alloys and Compounds, 2021, 878(1), 160269.
47 Park T S, Adomako N K, Ashong A N, et al. Coatings, 2021, 11(7), 755.
48 Zhao W, Yang F, Liu Z, et al. Ceramics International, 2021, 47(20), 29379.
49 Shi Y, Xu Q, Tian Z, et al. Nanoscale, 2022, 14(21), 7817.
50 Sarkar A, Loho C, Velasco L, et al. Dalton Transactions, 2017, 46(36), 12167.
51 Al Soubaihi R M, Saoud K M, Dutta J. Catalysts, 2018, 8(12), 660.
52 Desario P A, Pitman C L, Delia D J, et al. Applied Catalysis B:Environmental, 2019, 252, 205.
53 Van Spronsen M A, Frenken J W M, Groot I M N. Chemical Society Reviews, 2017, 46(14), 4347.
54 Chen H, Jie K, Jafta C J, et al. Applied Catalysis B:Environmental, 2020, 276, 119155.
55 Chen H, Fu J, Zhang P, et al. Journal of Materials Chemistry A, 2018, 6(24), 11129.
56 Chen H, Sun Y, Yang S, et al. Chemical Communications, 2020, 56(95), 15056.
57 Hou S, Ma X, Shu Y, et al. Nature Communications, 2021, 12(1), 5917.
58 Zhao J, Bao J, Yang S, et al. ACS Catalysis, 2021, 11(19), 12247.
59 Chang D, Wu P, Zhu L H, et al. Applied Materials Today, 2020, 20, 100680.
60 Li T, Yao Y, Huang Z, et al. Nature Catalysis, 2021, 4(1), 62.
61 Shu Y, Bao J, Yang S, et al. AIChE Journal, 2021, 67(1), 17046.
62 Liu H, Xia J, Zhang N, et al. Nature Catalysis, 2021, 4, 202.
63 Li F, Medvedeva X V, Medvedev J J, et al. Nature Catalysis, 2021, 4(6), 479.
64 Zhai P, Xia M, Wu Y, et al. Nature Communications, 2021, 12(1), 4587.
65 Gong F, Liu M, Ye S, et al. Advanced Functional Materials, 2021, 31, 2101715.
66 Lin G, Ju Q, Guo X, et al. Advanced Materials, 2021, 33, 2007509.
67 Zhang Y, Dong L Z, Li S, et al. Nature Communications, 2021, 12(1), 6390.
68 Liu W J, Xu Z, Zhao D, et al. Nature Communications, 2020, 11(1), 265.
69 Yin K, Chao Y, Lv F, et al. Journal of the American Chemical Society, 2021, 143(29), 10822.
70 Fu M, Ma X, Zhao K, et al. Science, 2021, 24, 102177.
71 Yao Y, Hu S, Chen W, et al. Nature Catalysis, 2019, 2(4), 304.
72 Rao R R, Kolb M J, Giordano L, et al. Nature Catalysis, 2020, 3(6), 516.
73 Chen F Y, Wu Z Y, Adler Z, et al. Joule, 2021, 5(7), 1704.
74 Zhang J, Zhang Q, Feng X. Advanced Materials, 2019, 31, 1808167.
75 Sun Y, Li R, Chen X, et al. Advanced Energy Materials, 2021, 11, 2003755.
76 Nguyen T X, Liao Y C, Lin C C, et al. Advanced Functional Materials, 2021, 31(27), 2101632.
77 Wang T, Fan J, Do-Thanh C L, et al. Angewandte Chemie, 2021, 133(18), 10041.
78 Tang L, Fan T, Chen Z, et al. Chemical Engineering Journal, 2021, 417, 129324.
79 Hu X, Luo G, Zhao Q, et al. Journal of the American Chemical Society, 2020, 142(39), 16776.
80 Sheng K, Yi Q, Chen A L, et al. ACS Applied Materials & Interfaces, 2021, 13(38), 45394.
81 Kong F, Si R, Chen N, et al. Applied Catalysis B:Environmental, 2022, 301, 120782.
82 Li T, Yao Y, Ko B H, et al. Advanced Functional Materials, 2021, 31(21), 2010561.
83 Jin Z, Lyu J, Zhao Y, et al. ACS Materials Letters, 2020, 2(12), 1698.
84 Zhang Y, Zhou B, Wei Z, et al. Advanced Materials, 2021, 33(48), 2104791.
85 Xie Y, Zhou Z, Yang N, et al. Advanced Functional Materials, 2021, 31(34), 2102886.
86 Wang S, Kaizhi G U, Wang D, et al. Angewandte Chemie International Edition, 2021, 133, 20415.
87 Liu Y, Zhang J, Li Y, et al. Nature Communications, 2020, 11(1), 1853.
88 Liu J, Liu Z, Wang H, et al. Advanced Functional Materials, 2022, 32(13), 2110702.
89 Wang J, Han W Q. Advanced Functional Materials, 2022, 32(2), 2107166.
90 Peng H J, Huang J Q, Cheng X B, et al. Advanced Energy Materials, 2017, 7(24), 1770141.
91 Wang S, Feng S, Liang J, et al. Advanced Energy Materials, 2021, 11(11), 2003314.
92 Zheng Y, Yi Y, Fan M, et al. Energy Storage Materials, 2019, 23, 678.
93 Tian L, Zhang Z, Liu S, et al. Energy & Environmental Materials, 2022, 5(2), 645.
94 Edalati P, Wang Q, Razavi-Khosroshahi H, et al. Journal of Materials Chemistry A, 2020, 8(7), 3814.
95 Edalati P, Shen X F, Watanabe M, et al. Journal of Materials Chemistry A, 2021, 9, 15076.
96 Du M, Liu S, Ge Y, et al. Ceramics International, 2022, 48(14), 20667.
97 Anandkumar M, Lathe A, Palve A M, et al. Journal of Alloys and Compounds, 2021, 850, 156716.
98 Feng D, Dong Y, Zhang L, et al. Angewandte Chemie, 2020, 132(44), 19671.
99 Krawczyk P A, Jurczyszyn M, Pawlak J, et al. ACS Applied Electronic Materials, 2020, 2(10), 3211.
100 Nguyen T X, Su Y H, Hattrick-Simpers J, et al. ACS Combinatorial Science, 2020, 22(12), 858.
101 Lu Z, Chen Z W, Singh C V. Matter, 2020, 3(4), 1318.
102 Yao Y, Dong Q, Brozena A, et al. Science, 2022, 376(6589), eabn3103.
[1] 郝玮, 王杰, 胥生元, 高文生, 谢克锋. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 22030313-10.
[2] 朱文嘉, 李小波, 陈亮平, 欧阳雪梅. Zn55.24Al18.86Zr25.9的晶体结构研究*[J]. 《材料导报》期刊社, 2017, 31(12): 126-130.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed