Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22090180-5    https://doi.org/10.11896/cldb.22090180
  无机非金属及其复合材料 |
电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究
付宁宁1, 谢绍兴1, 周禄军1, 丁亚萍1, 孟凡彬2,3,*
1 中车南京浦镇车辆有限公司,南京 210031
2 西南交通大学材料科学与工程学院,材料先进技术教育部重点实验室,成都 610031
3 西南交通大学深圳学院,广东 深圳 518000
Controllable Preparation of Electrospun Carbon Fibers/Graphene Films and Their Electromagnetic Interference Shielding
FU Ningning1, XIE Shaoxing1, ZHOU Lujun1, DING Yaping1, MENG Fanbin2,3,*
1 CRRC Nanjing Puzhen Co., Ltd., Nanjing Jiangsu Province, Nanjing 210031, China
2 Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
3 Shenzhen Institute of Southwest Jiaotong University, Shenzhen 518000, Guangdong, China
下载:  全 文 ( PDF ) ( 9197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着信息技术的迅猛发展,高功率电子设备包括卫星通信、宽带雷达、无线网络和便携式数字硬件等在医疗卫生、电子安全和国防安全领域广泛应用,电磁干扰、辐射污染以及信息泄露等问题则随之产生。目前,如何制备具有优异力学性能、电导率和电磁屏蔽性能的石墨烯基薄膜材料仍然是一个巨大的挑战。因此,本工作以氧化石墨烯(Graphene oxide,GO)水溶液和电纺碱处理聚丙烯腈(Alkali-treated polyacrylonitrile,aPAN)纳米纤维为原料,通过水热还原和冷冻干燥得到气凝胶,进一步通过预氧化和高温退火处理获得碳纳米纤维增强的石墨烯气凝胶(GCA),并通过液压机压制得到石墨烯基气凝胶薄膜,系统研究了薄膜的电导率、电磁屏蔽和光热转化性能。结果表明,在加入碳纳米纤维后,GCA膜的电导率可以提升至20.5 S/cm。对于电磁屏蔽性能,可从73.7 dB(GA)增加到78.8 dB(GCA-10),且气凝胶膜的整体屏蔽效果可以达到99.999 995%以上。此外,该气凝胶膜还呈现出优异的光热转化性能,有望应用于光吸收和原油传输等领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付宁宁
谢绍兴
周禄军
丁亚萍
孟凡彬
关键词:  石墨烯  电纺碳纳米纤维  多孔结构  电磁屏蔽  屏蔽机理    
Abstract: With the rapid development of information technology, high-power electronic equipment including satellite communications, broadband radar, wireless networks and portable digital hardware are widely used in medical, health, electronic security and national defense security, the electromagnetic interference, radiation pollution and information leakage problems have followed. At present, how to prepare graphene-based thin film materials with excellent mechanical properties, electrical conductivity and electromagnetic shielding properties is still a huge challenge. In this work, we adopted a facile and effective method by annealing the alkali-treated polyacrylonitrile (aPAN) nanofibers reinforced graphene oxide (GO) composite films to obtain carbon nanofiber-reinforced graphene aerogel (GCA). The conductivity, electromagnetic shielding and photothermal conversion properties of the thin film were systematically studied. The results show that after the addition of carbon nanofibers, the conductivity of the GCA membrane can be increased to 20.5 S/cm. For electromagnetic shielding performance, it can be increased from 73.7 dB (GA) to 78.8 dB (GCA-10), and the overall shielding effectiveness (SE) of aerogel film can reach more than 99.999 995%. In addition, the aerogel film also exhibits excellent photothermal conversion properties, which is expected to be applied to the fields such as light absorption and crude oil transmission.
Key words:  graphene    electrospun carbon nanofiber    porous structure    electromagnetic shielding property    electromagnetic shielding mec-hanism
发布日期:  2023-12-19
ZTFLH:  TB34  
基金资助: 中央引导地方科技发展资金—深圳虚拟大学园自由探索类基础研究项目(2021Szvup124)
通讯作者:  *孟凡彬,西南交通大学材料科学与工程学院教授。2008年于聊城大学获得学士学位,2014年毕业于电子科技大学材料科学与工程专业,获得博士学位。2015年进入西南交通大学材料科学与工程学院工作。现任材料科学与工程学院高分子系系主任、高分子党支部书记。主要从事电磁防护材料设计、制备及电磁学相关机理研究。近年来,发表 SCI 论文70余篇,申请发明专利17项,主持国家自然科学基金(面上、青年)、军委科技委、装备发展部、四川省科技支撑计划(重点研发、国际合作)等纵横向项目20余项。mengfanbin@swjtu.edu.cn   
作者简介:  付宁宁,高级工程师,硕士,2008年获得聊城大学学士学位,2011年毕业于大连交通大学材料加工工程专业,获硕士学位,主要从事轨道交通车辆制造相关工作,先后主持中车重点研发项目5项,获得省部级奖项3项,授权发明专利9项,发表核心期刊论文16篇。
引用本文:    
付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
FU Ningning, XIE Shaoxing, ZHOU Lujun, DING Yaping, MENG Fanbin. Controllable Preparation of Electrospun Carbon Fibers/Graphene Films and Their Electromagnetic Interference Shielding. Materials Reports, 2023, 37(24): 22090180-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090180  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22090180
1 Yang W S, Park B W, Jung E H, et al. Science, 2017, 356(6345), 1376.
2 Wang T, Yu W C, Zhou C G, et al. Composites Part B:Engineering, 2020, 193, 108015.
3 Wang L, Shi X T, Zhang J L, et al. Journal of Materials Science and Technology, 2020, 52, 119.
4 Liang C B, Ruan K P, Zhang Y L, et al. ACS Applied Materials and Interfaces, 2020, 12(15), 18023.
5 Song P, Liu B, Qiu H, et al. Composites Communications, 2021, 24, 100653.
6 Cao M S, Wang X X, Cao W Q, et al. Journal of Materials Chemistry C, 2015, 3(26), 6589.
7 Liu H G, Wu S Q, You C Y, et al. Carbon, 2021, 172, 569.
8 Wen B, Cao M S, Lu M M, et al. Advanced Materials, 2014, 26(21), 3484.
9 Zhong L L, Yu R F, Hong X H, et al. Textile Research Journal, 2021, 91, 1167.
10 Wang L S. Guangzhou Chemistry, 2021, 46(6), 1 (in Chinese).
王柳思. 广州化学, 2021, 46(6), 1.
11 González M, Baselga J, Pozuelo J. Carbon, 2019, 147, 27.
12 Wang C, Murugadoss V, Kong J, et al. Carbon, 2018, 140, 696.
13 Akhavan O. Carbon, 2010, 48(2), 509.
14 Chen Y, Li J Z, Li T, et al. Carbon, 2021, 180, 163.
15 Zhang H M, Zhang G C, Gao Q, et al. Composites Part A:Applied Science and Manufacturing, 2020, 130, 105773.
16 Kumar P, Shahzad F, Hong S M, et al. RSC Advances, 2016, 6(103), 101283.
17 Song C K, Meng X Y, Chen H, et al. Composites Communications, 2021, 24, 100632.
18 Li S T, Li W C, Nie J, et al. Carbon, 2019, 143, 154.
19 Wang Y, Meng F B, Huang F, et al. ACS Applied Materials and Interfaces, 2020, 12(42), 47811.
20 Drakakisa E, Kymakis E, Kenanakis G, et al. Applied Surface Science, 2017, 398, 15.
[1] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[2] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[3] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[4] 王磊, 于新海, 袁帅帅, 姚馨淇, 李传东. 石墨烯及MXenes在氢气传感器中的应用研究进展[J]. 材料导报, 2023, 37(21): 22040076-11.
[5] 范青青, 安立宝, 常春蕊, 张志明, 贾晓彤. 石墨烯负载Pdn(n=1—3)原子/团簇吸附三氯甲烷分子的第一性原理研究[J]. 材料导报, 2023, 37(21): 22050174-6.
[6] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[7] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[8] 范存霞, 谷雨, 邱星晨, 李长明, 郭春显. 基于石墨烯/氯化血红素复合物纳米酶可视化检测谷胱甘肽[J]. 材料导报, 2023, 37(2): 22030004-8.
[9] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[10] 何恩义, 殷诗浩, 叶永盛, 丁迪, 胡正浪, 吴海华. 微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能[J]. 材料导报, 2023, 37(17): 22010129-8.
[11] 李晓丹, 刘宏宇, 何瑞, 王锋. 石墨烯改性及在有机涂层中的形态[J]. 材料导报, 2023, 37(17): 21100195-9.
[12] 陈善登, 白清顺, 窦昱昊, 郭万民, 郭永博, 杜云龙. 金刚石表面生长石墨烯的纳观尺度机理研究进展[J]. 材料导报, 2023, 37(16): 21110098-7.
[13] 王健阳, 马颖, 李思仪, 李天微, 王秀梅, 万晔, 郜思同, 郭惠琳, 韦杰. 石墨烯/卟啉复合气凝胶的制备与性能研究[J]. 材料导报, 2023, 37(16): 21080120-5.
[14] 颜睿, 沃虓野, 王豫, 黄健, 张齐贤. 石墨烯改性导热复合材料研究进展[J]. 材料导报, 2023, 37(15): 21110075-14.
[15] 杨芷奇, 孙立, 宋伟明, 赵冰, 叶军, 陈朝晖, 赵桦萍, 王福洋. NiFe-P/石墨烯双功能催化剂的有效构建及全解水性能研究[J]. 材料导报, 2023, 37(13): 21120112-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed