Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21110098-7    https://doi.org/10.11896/cldb.21110098
  无机非金属及其复合材料 |
金刚石表面生长石墨烯的纳观尺度机理研究进展
陈善登, 白清顺*, 窦昱昊, 郭万民, 郭永博, 杜云龙
哈尔滨工业大学机电工程学院,哈尔滨150001
Research Progress in the Nanoscale Mechanism of Graphene Growth on Diamond Surface
CHEN Shandeng, BAI Qingshun*, DOU Yuhao, GUO Wanmin, GUO Yongbo, DU Yunlong
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 7171KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,将石墨烯转移至金刚石表面形成的石墨烯/金刚石异质结构在精密制造、电子制造等领域展现出显著优势,但石墨烯本征特性会因转移至介电基材后缺陷和界面处的声子散射而明显减弱。因此,以金刚石作为衬底直接生长石墨烯成为获得高质量石墨烯/金刚石异质结构的一种全新尝试。虽然以金刚石作为衬底相比于其他介电材料拥有众多优势,但是现阶段在金刚石表面生长的石墨烯通常存在晶格缺陷多、畴区尺寸小等缺点,也缺乏纳观尺度下金刚石结构表面石墨烯生长的机理解析和理论指导。本文评述了在金属催化、非金属诱导和高温热解三种催化方式下金刚石表面生长石墨烯的纳观尺度机理研究进展,对不同催化方式下金刚石表面生长石墨烯的原子机理进行了总结,并对不同催化条件下生长石墨烯的典型结果进行对比分析,最后归纳了金刚石结构表面生长石墨烯研究所面临的关键问题与挑战,展望了基于金刚石表面石墨烯生长研究的发展方向,可为高质量石墨烯/金刚石异质结构的研究与应用提供有益借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈善登
白清顺
窦昱昊
郭万民
郭永博
杜云龙
关键词:  石墨烯  金刚石  金属催化  非金属原子掺杂    
Abstract: In recent decades, the graphene/diamond heterostructure formed by transferring graphene to the diamond surface has shown significant superiorities in the fields of ultra-precision manufacturing and microelectronics, whereas the intrinsic properties of graphene can be weakened significantly owing to the phonon scattering at the interface and the generation of defects after transferring graphene to the dielectric substrate. As a result, the direct growth of graphene on diamond has become a creative attempt to obtain a high-quality graphene/diamond heterostructure. Although the use of diamond as the substrate has a number of advantages in theory over other dielectric materials, the graphene grown on the diamond still has the drawbacks of many lattice defects and the small size of domain. Up to date, there is a shortage of mechanism analysis and theoretical guidance at nanoscale for graphene growth on diamond. This article summarizes the research progress on the nanoscale mechanism of graphene growth on diamond mediated by metal catalysis, nonmetallic atoms doping, and pyrolysis catalysis respectively. Concurrently, the typical results of graphene obtained under different process conditions are compared. Lastly, the challenges faced by the graphene growth on diamond are summarized, and the development direction of study on the nanoscale mechanism of graphene growth on diamond surface is prospected. In brief, the thesis lays a theoretical basis for the research and application of high-quality graphene/diamond heterostructures.
Key words:  graphene    diamond    metal catalysis    nonmetallic atom doping
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TQ127.11  
  TB332  
基金资助: 国家自然科学基金(52075129;51775146);国家自然科学基金委员会-中国工程物理研究院联合基金(U2030109)
通讯作者:  *白清顺,哈尔滨工业大学机电工程学院教授、博士研究生导师。1998年,哈尔滨工业大学机械工程专业本科毕业,获得工学学士学位;2000年,哈尔滨工业大学机械制造及其自动化专业毕业,获得硕士学位;2004年,哈尔滨工业大学机械制造及其自动化专业毕业,获得博士学位,毕业后留校任教。近年来获得国家发明专利授权20余项,在国内外学术期刊上发表论文100余篇。主要研究方向为超精密加工与微纳制造、超洁净制造理论与技术、石墨烯基础理论及应用等。qshbai@hit.edu.cn   
作者简介:  陈善登,2019年6月、2020年12月分别于澳大利亚新南威尔士大学和昆士兰大学获得荣誉工学学士学位和硕士学位。现为哈尔滨工业大学机电工程学院博士研究生,在白清顺教授的指导下进行研究。目前主要研究领域为石墨烯材料基础及应用技术。
引用本文:    
陈善登, 白清顺, 窦昱昊, 郭万民, 郭永博, 杜云龙. 金刚石表面生长石墨烯的纳观尺度机理研究进展[J]. 材料导报, 2023, 37(16): 21110098-7.
CHEN Shandeng, BAI Qingshun, DOU Yuhao, GUO Wanmin, GUO Yongbo, DU Yunlong. Research Progress in the Nanoscale Mechanism of Graphene Growth on Diamond Surface. Materials Reports, 2023, 37(16): 21110098-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110098  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21110098
1 Masante C, Rouger N, Pernot J. Journal of Physics D: Applied Physics, 2021, 54(23), 233002.
2 Balandin A A, Ghosh S, Bao W, et al. Nano Letters, 2008, 8(3), 902.
3 Shen B, Chen S, Huang Z, et al. Applied Surface Science, 2020, 504, 144372.
4 Yu J, Liu G, Sumant A V, et al. Nano Letters, 2012, 12(3), 1603.
5 Ueda K, Aichi S, Asano H. Applied Physics Letters, 2016, 108(22), 222102.
6 Peng Z, Yan Z, Sun Z, et al. ACS Nano, 2011, 5(10), 8241.
7 Berger C, Song Z, Li X, et al. Science, 2006, 312(5777), 1191.
8 Ding X, Ding G, Xie X, et al. Carbon, 2011, 49(7), 2522.
9 Komanduri R, Shaw M C. Philosophical Magazine, 1976, 34(2), 195.
10 Devita A, Galli G, Canning A, et al. Nature, 1996, 379(6565), 523.
11 Tokuda N, Fukui M, Makino T, et al. Japanese Journal of Applied Phy-sics, 2013, 52(11), 110121.
12 Tokuda N, Umezawa H, Kato H, et al. Applied Physics Express, 2009, 2(5), 055001.
13 Leyssale J M, Vignoles G L. Chemical Physics Letters, 2008, 454(4), 299.
14 Brenner D W, Shenderova O A, Harrison J A, et al. Journal of Physics-Condensed Matter, 2002, 14(4), 783.
15 Garcia J M, He R, Jiang M P, et al. Carbon, 2011, 49(3), 1006.
16 Garcia J M, He R, Jiang M P, et al. Solid State Communications, 2010, 150(17), 809.
17 Eda G, Fanchini G, Chhowalla M. Nature Nanotechnology, 2008, 3(5), 270.
18 Berman D, Deshmukh S A, Narayanan B, et al. Nature Communications, 2016, 7, 1.
19 Wang Y Y, Ni Z H, Yu T, et al. Journal of Physical Chemistry C, 2008, 112(29), 10637.
20 Mueller J E, Van Duin A C T, Goddard W A. Journal of Physical Che-mistry C, 2010, 114(11), 4939.
21 Chen S D, Bai Q S, Dou Y H, et al. Acta Physica Sinica, 2022, 71(8), 257 (in Chinese).
陈善登, 白清顺, 窦昱昊, 等.物理学报, 2022, 71(8), 257.
22 Hofmann S, Csanyi G, Ferrari A C, et al. Physical Review Letters, 2005, 95(3), 036101.
23 Kanada S, Nagai M, Ito S, et al. Diamond and Related Materials, 2017, 75, 105.
24 Barnard A S, Sternberg M. Journal of Computational and Theoretical Nanoscience, 2008, 5(11), 2089.
25 Tokuda N, Makino T, Inokuma T, et al. Japanese Journal of Applied Physics, 2012, 51(9), 090107.
26 Tokuda N, Umezawa H, Yamabe K, et al. Diamond and Related Mate-rials, 2010, 19(4), 288.
27 Cooil S P, Song F, Williams G T, et al. Carbon, 2012, 50(14), 5099.
28 Seo J H, Lee H W, Kim J K, et al. Current Applied Physics, 2012, 12, S131.
29 Hu W, Li Z, Yang J. Journal of Chemical Physics, 2013, 138(5), 054701.
30 Tulic S, Waitz T, Caplovicova M, et al. ACS Nano, 2019, 13(4), 4621.
31 Sun Z, Yan Z, Yao J, et al. Nature, 2010, 468(7323), 549.
32 Byun S J, Lim H, Shin G Y, et al. Journal of Physical Chemistry Letters, 2011, 2(5), 493.
33 Ueda K, Aichi S, Asano H. Diamond and Related Materials, 2016, 63, 148.
34 Emtsev K V, Bostwick A, Horn K, et al. Nature Materials, 2009, 8(3), 203.
35 Yuan Q, Liu Y, Ye C, et al. Biosensors & Bioelectronics, 2018, 111, 117.
36 Narulkar R, Bukkapatnam S, Raff L M, et al. Computational Materials Science, 2009, 45(2), 358.
37 Phinney F S. Science, 1954, 120(3114), 393.
38 Bai Q, Wang Z, Guo Y, et al. Current Nanoscience, 2018, 14(5), 377.
39 Tersoff J. Physical Review Letters, 1988, 61(25), 2879.
40 Guo X G, Zhai C H, Jin Z J, et al. Journal of Mechanical Engineering, 2015, 51(17), 162(in Chinese).
郭晓光, 翟昌恒, 金洙吉, 等. 机械工程学报, 2015, 51(17), 162.
41 Juan A, Hoffmann R. Surface Science, 1999, 421(1), 1.
42 Evans D A, Roberts O R, Vearey-Roberts A R, et al. Applied Physics Letters, 2007, 91(13), 132114.
43 Cooil S P, Wells J W, Hu D, et al. Applied Physics Letters, 2015, 107(18), 181603.
44 Zapol P, Sternberg M, Curtiss L A, et al. Physical Review B, 2002, 65(4), 045403.
45 Bai S, Xu J, Wang Y, et al. Journal of Physical Chemistry C, 2020, 124(48), 26379.
46 Yan Y F, Zhang S B, Al-Jassim M M. Physical Review B, 2002, 66(20), 201401.
47 Ogawa S, Yamada T, Ishizduka S, et al. Japanese Journal of Applied Physics, 2012, 51(11), 11PF02.
48 Gu C, Li W, Xu J, et al. Applied Physics Letters, 2016, 109(16), 162105.
49 Lu C, Yang H, Xu J, et al. Carbon, 2017, 115, 388.
50 Patera L L, Africh C, Weatherup R S, et al. ACS Nano, 2013, 7(9), 7901.
51 Weatherup R S, Baehtz C, Dlubak B, et al. Nano Letters, 2013, 13(10), 4624.
52 Simmons J M, Nichols B M, Marcus M S, et al. Small, 2006, 2(7), 902.
[1] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[2] 刘震, 尹育航, 敬臣, 武美玲, 陶洪亮, 程彦强. 磨粒有序分布对金刚石锯片切割性能的影响[J]. 材料导报, 2023, 37(8): 21070268-5.
[3] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[4] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[5] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[6] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[7] 范存霞, 谷雨, 邱星晨, 李长明, 郭春显. 基于石墨烯/氯化血红素复合物纳米酶可视化检测谷胱甘肽[J]. 材料导报, 2023, 37(2): 22030004-8.
[8] 董浩永, 任瑛, 张贵锋. MPCVD同质外延单晶金刚石研究进展[J]. 材料导报, 2023, 37(16): 21100019-8.
[9] 王健阳, 马颖, 李思仪, 李天微, 王秀梅, 万晔, 郜思同, 郭惠琳, 韦杰. 石墨烯/卟啉复合气凝胶的制备与性能研究[J]. 材料导报, 2023, 37(16): 21080120-5.
[10] 颜睿, 沃虓野, 王豫, 黄健, 张齐贤. 石墨烯改性导热复合材料研究进展[J]. 材料导报, 2023, 37(15): 21110075-14.
[11] 杨芷奇, 孙立, 宋伟明, 赵冰, 叶军, 陈朝晖, 赵桦萍, 王福洋. NiFe-P/石墨烯双功能催化剂的有效构建及全解水性能研究[J]. 材料导报, 2023, 37(13): 21120112-9.
[12] 卫琳, 刘贵立, 杨疆飞, 李欣玥, 张国英. 零模超晶格类型对石墨烯纳米带金属性影响的密度泛函理论研究[J]. 材料导报, 2023, 37(13): 22010031-7.
[13] 吴晨曦, 郑文跃, 王现中, 熊道英, 金少波. 石墨烯增强防腐涂层的研究进展[J]. 材料导报, 2023, 37(13): 21080272-9.
[14] 黄志雄, 胡新军, 田建平, 陈满骄, 马小燕, 江雪莲, 唐诗应. 芳基磷酸酯盐改性石墨烯/水性环氧涂层的耐腐蚀性能研究[J]. 材料导报, 2023, 37(13): 21110138-7.
[15] 樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed