Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 22030004-8    https://doi.org/10.11896/cldb.22030004
  高分子与聚合物基复合材料 |
基于石墨烯/氯化血红素复合物纳米酶可视化检测谷胱甘肽
范存霞1,2, 谷雨2,*, 邱星晨2,3, 李长明2,*, 郭春显1,2,*
1 苏州科技大学物理科学与技术学院,江苏 苏州 215009
2 苏州科技大学材料科学与工程学院,江苏 苏州 215009
3 苏州科技大学环境科学与工程学院,江苏 苏州 215009
Visual Detection of Glutathione Based on Graphene/Hemin Composites with Nanoenzymes Activity
FAN Cunxia1,2, GU Yu2,*, QIU Xingchen2,3, LI Changming2,*, GUO Chunxian1,2,*
1 School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
3 School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 5336KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米酶是一类具有类酶催化活性的纳米材料,与天然酶具有相似的尺寸、形状和表面电荷等,但更易于制备、且价格低廉、稳定性好、有望成为天然酶的替代品,在生物分析、成像、治疗、环境保护等方面具有广阔的应用前景。石墨烯(Graphene,GR)由于比表面积较大、导电性及热导率高、力学性能好、晶格缺陷较少以及表面功能性官能团丰富等特点,在二维催化剂的载体方面有广阔的应用前景。本工作通过石墨烯与氯化血红素(Hemin)的自组装制备了一种具有纳米酶活性的纳米复合材料GR/Hemin。该复合材料保留了石墨烯比表面积大的特征,且在酸性条件下,可以催化氧分子生成自由基(ROS),从而将3, 3′, 5, 5′四甲基联苯胺(TMB)氧化。基于体系中谷胱甘肽(GSH)与TMB氧化的竞争关系,建立了一种快速,高灵敏度的可视化检测GSH检测方法。使用该方法时652 nm处的紫外吸光度与谷胱甘肽浓度在0.2 ~100 μmol/L范围内呈现良好的线性关系,检测限为0.059 μmol/L,肉眼可识别的谷胱甘肽最低浓度为20 μmol/L。该方法可实现对血清中GSH的简单、快速、高选择性的检测,在临床检测中有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范存霞
谷雨
邱星晨
李长明
郭春显
关键词:  谷胱甘肽  石墨烯  四甲基联苯胺  可视化检测    
Abstract: Nano-enzyme is a kind of nano-materials with enzyme-like catalytic activity, which is similar to natural enzymes in size, shape and surface charge. Nano-enzyme is expected to be a substitute for natural enzyme because of its simple preparation, low cost and good stability. Nano-enzyme has a broad application prospect in biological analysis, imaging, treatment, environmental protection and so on. Graphene has a broad application prospect as a two-dimensional catalyst carrier because of its large specific surface area, high electrical and thermal conductivity, good mechanical properties, few lattice defects and rich surface functional groups. In this work, a kind of nanocomposite GR/Hemin with high enzyme activity was prepared by self-assembly of graphene and hemin. The composite retains the characteristics of large specific surface area of graphene and can catalyze oxygen molecules to form free radicals (ROS) under acidic conditions, thus oxidizing TMB. Based on the competitive relationship between glutathione (GSH) and TMB oxidation in the system, a rapid and sensitive visual method for GSH detection was established. This method shows a good linear relationship between UV absorbance at 652 nm and glutathione concentration in the range of 0.2—100 μmol/L, with the detection limit of 0.059 μmol/L. The lowest glutathione concentration recognizable to the naked eye is 20 μmol/L. It can realize the simple, rapid and highly selective detection of GSH in serum, and has a broad application prospect in clinical diagnosis.
Key words:  glutathione    graphene    tetramethylbenzidine (TMB)    visual detection
发布日期:  2023-02-08
ZTFLH:  TB332  
基金资助: 国家自然科学基金(21972102;21904092);国家重点研发计划(2021YFA0910400)
通讯作者:  *李长明,美国医学与生物工程院院士、英国皇家化学学会会士。1970年于中国科学技术大学近代化学系本科毕业,1983年于武汉大学物理化学专业硕士毕业,1986年获武汉大学物理化学理学博士学位。研究领域包括功能纳米材料、高效能量转换机制和应用、先进生物传感与生物芯片,涵盖燃料电池、太阳能电池、锂电池、超级电容、析氢析氧、化学/生物传感等。发表近700篇SCI科学论文,包括Nature Naterials、Nature Energy、Journal of the American Chemical Society、Physical Review Letters、Nano Letters、ACS Nano、Advanced materials、Advanced Energy Materials、Advanced Functional Materials 、Energy and Environmental Sciences等。
郭春显,教授、国家高层次人才计划青年人才。2011年在新加坡南洋理工大学获得博士学位,并在澳大利亚阿德莱德大学和美国凯斯西储大学开展研究工作,2016年入职苏州科技大学研究专注于表界面调控的微纳结构材料及其电催化和仿生催化。在相关领域杂志包括Chemical Reviews、Angewandte Chemie International Edition、Advanced Materials、ACS Nano等发表论文150余篇,论文被引用1.4万余次。   
作者简介:  范存霞,2019年6月获得苏州大学文正学院工学学士学位,现为苏州科技大学物理科学与技术学院物理学专业研究生,在李长明院士及谷雨讲师的指导下进行研究。目前主要研究领域为二维材料的仿生酶合成及其在生物检测中的应用。
谷雨,通信作者,苏州科技大学材料科学与工程学院副教授、硕士研究生导师。2016年6月获得中国药科大学药物分析学博士学位,后继续在南京大学化学化工学院从事博士后研究工作,2018年入职苏州科技大学,主要从事各向异性贵金属纳米粒子、有机-无机复合纳米材料的合成及其在细胞成像和可视化分析、液体活检、细胞中肿瘤标志物的时空分辨成像方面研究。以第一作者或通讯作者发表多篇高质量学术论文,包括Chemical Science、Analytical Chemistry、Advanced Functional Materials、ACS Sensors等。
引用本文:    
范存霞, 谷雨, 邱星晨, 李长明, 郭春显. 基于石墨烯/氯化血红素复合物纳米酶可视化检测谷胱甘肽[J]. 材料导报, 2023, 37(2): 22030004-8.
FAN Cunxia, GU Yu, QIU Xingchen, LI Changming, GUO Chunxian. Visual Detection of Glutathione Based on Graphene/Hemin Composites with Nanoenzymes Activity. Materials Reports, 2023, 37(2): 22030004-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030004  或          http://www.mater-rep.com/CN/Y2023/V37/I2/22030004
1 Garcia-Viloca M, Gao J, Karplus M, et al. Science, 2004, 303 (5655), 186.
2 Manea F, Houillon F B, Pasquato L, et al. Angewandte Chemie International Edtion in English, 2004, 43 (45), 6165.
3 Zeng R, Luo Z, Zhang L, et al. Analytical Chemistry, 2018, 90 (20), 12299.
4 Li Y S, Chen L. Journal of Inorganic Materials, 2018, 33 (2), 221.
5 Wang J J, Wang J L, Zhou P, et al. Mikrochim Acta, 2020, 187 (2), 99.
6 Yin Z, Shi Y, Cen M, et al. Science Bulletin, 2021, 66 (15), 1518.
7 Li N, Huang M, Zhou J, et al. Chinese Journal of Catalysis, 2021, 42 (5), 781.
8 Wu W, Wang Q, Chen J, et al. Nanoscale, 2019, 11 (26), 12603.
9 Chen Y Y, Zhao C X, Wang Y Y, et al. Materials Science & Engineering C-Materials For Biological Applications, 2020, 117, 111264.
10 Dugan L L, Gabrielsen J K, Shan P Y, et al. Neurobiology of Disease, 1996, 3 (2), 129.
11 Cao G, Sun D, Gu T, et al. Biosensors and Bioelectronics, 2019, 145, 111707.
12 Kong Z K, Chen Y, Hua J Z, et al. New Carbon Materials, 2021, 36 (4), 810.
13 Wang B, Ding Y, Deng Z, et al. Chinese Journal of Catalysis, 2019, 40 (3), 335.
14 Song Y, Qu K, Zhao C, et al. Advanced Materials, 2010, 22 (19), 2206.
15 Wang Q, Lei J, Deng S, et al. Chemical Communications, 2013, 49 (9), 916.
16 Ji J, Li Y, Peng W, et al. Advanced Materials, 2015, 27 (36), 5264.
17 Jiao L, Wu J, Zhong H, et al. ACS Catalysis, 2020, 10 (11), 6422.
18 Li R, Zhen M, Guan M, et al. Biosensors and Bioelectronics, 2013, 47, 502.
19 Wu W, Wang Q, Chen J, et al. Nanoscale, 2019, 11 (26), 12603.
20 Xie J W, Cheng D, Li P P, et al. ACS Applied Nano Materials, 2021, 4 (5), 4853.
21 Petrini S, D'Oria V, Piemonte F. Methods in Molecular Biology, 2015, 1208, 395.
22 Tcherkas Y, Denisenko A. Journal of Chromatography A, 2001, 913 (1-2), 309.
23 Burford N, Eelman M D, Mahony D E, et al. Chemical Communications, 2003, 7(1), 146.
24 Li S, Zhao X T, Gang R T, et al. Analytical Chemistry, 2020, 92 (7), 5152.
25 Chen Y F, Jiao L, Yan H Y, et al. Analytical Chemistry, 2020, 92 (19), 13518.
26 Olabi A G, Abdelkareem M A, Wilberforce T, et al. Renewable and Sustainable Energy Reviews, 2021, 135, 110026.
27 Shaari N, Kamarudin S K. Renewable and Sustainable Energy Reviews, 2017, 69, 862.
28 Xu J, Huang J, Wang Z, et al. Chinese Journal of Catalysis, 2020, 41 (3), 474.
29 Liu Y, Ding J, Wang Q, et al. New Carbon Materials, 2021, 36 (4), 779.
30 Banerjee A N. Interface Focus, 2018, 8 (3), 20170056.
31 Madni A, Noreen S, Maqbool I, et al. Journal of Drug Targeting, 2018, 26 (10), 858.
32 Cai L, Hu C, Liu S, et al. Science China Materials, 2021, 64 (2), 488.
33 Zhang H, Chen J, Yang Y, et al. Analytical Chemistry, 2019, 91 (8), 5004.
34 Wang N, Xie M, Wang M, et al. Talanta, 2020, 220, 121352.
35 Wang J, Wang X, Pan X, et al. Microchimica Acta, 2020, 187 (6), 1.
36 Meyer J C, Geim A K, Katsnelson M I, et al. Nature, 2007, 446 (7131), 60.
37 Qi H, Cao L Y, Li J Y, et al. ACS Applied Materials & Interfaces, 2016, 8 (51), 35253.
38 Gu Y, Fan C, Hao X, et al. Advanced Functional Materials, 2022, 32 (9), 2110192.
39 Guo Y, Li J, Dong S. Sensors and Actuators B: Chemical, 2011, 160 (1), 295.
40 Hui L, Xue Y, Yu H, et al. Chemphyschem, 2020, 21 (19), 2145.
41 Gang W, Gu Z Y, Gong S S, et al. Spectroscopy and Spectral Analysis, 2020, 40 (6), 1722.
42 Sohrabi S, Dehghanpour S, Ghalkhani M. ChemCatChem, 2016, 8 (14), 2356.
43 Zhang L, Hou Y, Guo X Y, et al. Luminescence, 2020, 35 (8), 1350.
44 Jiang N, Zhang C, Li M, et al. Micromachines (Basel), 2021, 12 (9), 1099.
[1] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[2] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[3] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[4] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[5] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[6] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[7] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[8] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[9] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[10] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[11] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[12] 陈如冰, 胡永琴, 陈美珠, 安佳, 吕颖, 刘玉菲, 李东玲. 基于过氧化氢酶介导金纳米颗粒交联聚集的乙肝表面抗原可视化检测[J]. 材料导报, 2022, 36(5): 21020098-4.
[13] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[14] 蔡中盼, 田茂诚, 张冠敏. 不同层数和尺寸的石墨烯对润滑油热物性能的影响[J]. 材料导报, 2022, 36(3): 20100213-8.
[15] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed