Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 22010068-9    https://doi.org/10.11896/cldb.22010068
  无机非金属及其复合材料 |
基于机器学习回归模型的三峡大坝混凝土强度预测
徐潇航1, 胡张莉1, 刘加平1,*, 李文伟2, 刘建忠3
1 东南大学材料科学与工程学院,南京 211189
2 中国长江三峡集团有限公司,北京 100038
3 江苏苏博特新材料股份有限公司,南京 211103
Concrete Strength Prediction of the Three Gorges Dam Based on Machine Learning Regression Model
XU Xiaohang1, HU Zhangli1, LIU Jiaping1,*, LI Wenwei2, LIU Jianzhong3
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 China Three Gorges Corporation, Beijing 100038, China
3 Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
下载:  全 文 ( PDF ) ( 7067KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人工神经网络、决策树与支持向量机为目前混凝土强度预测的常用机器学习算法。为实现三峡大坝大体积混凝土原材料筛选以及配比经验的学习与应用,并对大坝维护以及其他水利工程的建设提供指导,本研究基于三峡大坝主体工程混凝土28 d抗压强度数据,构建了原材料性能及配合比与混凝土强度之间的关系,并结合随机森林特征权重排序与统计分析的方法,确定了水泥用量、混凝土温度、水灰比为影响三峡大坝混凝土抗压强度的关键特征参数。探讨了常用机器学习算法对三峡大坝28 d混凝土强度预测效果,依据固定特征参数、通用参数与超参数综合调优后的多种算法的预测结果对比可知,经体系化综合调优的Epsilon支持向量回归(SVR)算法在预测中更优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐潇航
胡张莉
刘加平
李文伟
刘建忠
关键词:  混凝土  三峡工程  抗压强度  机器学习  模型调优    
Abstract: Artificial neural network, decision tree and support vector machine are commonly used machine learning algorithms for concrete strength prediction. For learning and applying of the experience about the raw material selection and mixture design of Three Gorges Dam mass concrete, and providing guidance for dam maintenance and construction of other water conservancy projects, this study established a relationship between material properties, mixture design and concrete strength based on the 28-day compressive strength data of concrete used in the main project of Three Gorges Dam. Combined with random forest characteristic weight ranking and statistical analysis, cement dosage, concrete temperature and water-to-cement ratio were found to be the three key characteristic parameters dominating the compressive strength of the Three Gorges Dam concrete. Meanwhile, the prediction efficiency of the commonly used machine learning algorithms on 28-day concrete strength of the Three Gorges Dam were discussed. According to the prediction results of the three different kinds of machine learning algorithms after comprehensive optimization of the fixed characteristic parameters, general parameters and hyper-parameters, the Epsilon-support vector regression (SVR) algorithm with systematic comprehensive optimization was found to be the best in prediction.
Key words:  concrete    Three Gorges project    compressive strength    machine learning    model optimization
发布日期:  2023-02-08
ZTFLH:  TP181  
  TP183  
  TU502+.6  
  TU528.01  
基金资助: 国家自然科学基金联合基金项目(U2040222);高性能土木工程材料国家重点实验室开放基金项目(2020CEM011)
通讯作者:  *刘加平,中国工程院院士,东南大学首席教授。2008年南京工业大学博士毕业,2012年到东南大学工作至今。主要从事混凝土收缩裂缝控制和超高性能化领域的研究工作。围绕水泥基材料的收缩与裂缝控制、流变性调控和高性能化三大关键问题,先后完成了包括“973”项目、国家自然科学基金重点项目和“十一五”、“十二五”等各类科研课题30余项。以第一发明人获授权发明专利91件,获国际专利14件,发表SCI/EI收录论文258篇,主/参编标准或规程22项。获国家技术发明二等奖1项、国家科技进步二等奖4项。   
作者简介:  徐潇航,2021年6月于东南大学获得工学学士学位。现就读于东南大学材料科学与工程学院,在刘加平教授的指导下进行研究。目前主要研究领域为人工智能算法对混凝土性能预测与配合比调优等研究工作。
引用本文:    
徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
XU Xiaohang, HU Zhangli, LIU Jiaping, LI Wenwei, LIU Jianzhong. Concrete Strength Prediction of the Three Gorges Dam Based on Machine Learning Regression Model. Materials Reports, 2023, 37(2): 22010068-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010068  或          http://www.mater-rep.com/CN/Y2023/V37/I2/22010068
1 Young B A, Hall A, Pilon L, et al. Cement and Concrete Research, 2019, 115, 379.
2 Yeh I C. Cement and Concrete Research, 1998, 28(12), 1797.
3 Feng D C, Liu Z T, Wang X D, et al. Construction and Building Materials, 2020, 230, 117000.
4 Fan L, Liu G Y, Jin D Z, et al. Concrete, 2017(3), 97 (in Chinese).
樊磊, 刘光焰, 金大智, 等. 混凝土, 2017(3), 97.
5 Fang T, Wang J F, Zhang X Y, et al. Concrete, 2016(12), 38 (in Chinese).
方涛, 王俊锋, 张鑫月, 等. 混凝土, 2016(12), 38.
6 Cao F, Zhou Y, Wang C X, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(1), 90 (in Chinese).
曹斐, 周彧, 王春晓, 等. 硅酸盐通报, 2021, 40(1), 90.
7 Deng F, He Y, Zhou S, et al. Construction and Building Materials, 2018, 175, 562.
8 Hu Y, Zhang L S, Yuan F Y, et al. Construction Technology, 2020, 49(17), 89 (in Chinese).
胡毅, 张陆山, 袁福银, 等. 施工技术, 2020, 49(17), 89.
9 Jaafari A, Panahi M, Pham B T, et al. Catena, 2019, 175, 430.
10 Yuan Z, Wang L N, Ji X. Advances in Engineering Software, 2014, 67, 156.
11 Van Dao D, Ly H B, Trinh S H, et al. Materials, 2019, 12(6), 983.
12 Behnood A, Golafshani E M. Journal of Cleaner Production, 2018, 202, 54.
13 Bui D K, Nguyen T, Chou J S, et al. Construction and Building Materials, 2018, 180, 320.
14 Pham A D, Hoang N D, Nguyen Q T. Journal of Computing in Civil Engineering, 2016, 30(3), 06015002.
15 Yu Y, Li W, Li J, et al. Construction and Building Materials, 2018, 184, 229.
16 Tuan N S, Wakim J, To Q D, et al. Construction and Building Materials, 2020, 260, 119757.
17 Friedman J H. Annals of Statistics, 2001, 29(5), 1189.
18 Chen T Q, Guestrin C, Assoc Comp M. In:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, 2016, pp. 785.
19 Zhou J C. Artificial neural network, the realization of the sixth generation computer, China Popular Science Press, China, 1993, pp. 47 (in Chinese).
周继成. 人工神经网络, 第六代计算机的实现, 科学普及出版社, 1993, pp. 47.
20 Ben Chaabene W, Flah M, Nehdi M L. Construction and Building Materials, 2020, 260, 119889.
21 Zhou Z H. Machine learning, Tsinghua University Press, China, 2016, pp. 179 (in Chinese).
周志华. 机器学习, 清华大学出版社, 2016, pp. 179.
22 Zhang Y K, Li Y L, Song J Z, et al. International Journal of Electrical Power & Energy Systems, 2020, 116, 105526.
23 José U. Python for Probability, Statistics and Machine Learning, Cham, Springer, GER, 2019, pp. 259.
24 Behnood A, Behnood V, Gharehveran M M, et al. Construction and Building Materials, 2017, 142, 199.
25 Behnood A, Golafshani E M. Construction and Building Materials, 2020, 243, 118152.
26 Chou J S, Chiu C K, Farfoura M, et al. Journal of Computing in Civil Engineering, 2011, 25(3), 242.
27 Dantas A T A, Batista Leite M, de Jesus Nagahama K. Construction and Building Materials, 2013, 38, 717.
28 Khademi F, Jamal S M, Deshpande N, et al. International Journal of Sustainable Built Environment, 2016, 5(2), 355.
29 Naderpour H, Rafiean A H, Fakharian P. Journal of Building Engineering, 2018, 16, 213.
30 Atici U. Expert Systems with Applications, 2011, 38(8), 9609.
31 Wang Y, Zhang Y T, Hu H X, et al. Journal of Building Materials, 2014, 17(4), 672 (in Chinese).
王岩, 张友桃, 胡鸿翔, 等. 建筑材料学报, 2014, 17(4), 672.
32 Xia K W, Li C B, Shen J Y. Computer Science, 2005, 32(10), 143 (in Chinese).
夏克文, 李昌彪, 沈钧毅. 计算机科学, 2005, 32(10), 143.
33 Chen B, Guo X M, Liu G H. Journal of Hydroelectric Engineering, 2011, 30(6), 251 (in Chinese).
陈斌, 郭雪莽, 刘国华. 水力发电学报, 2011, 30(6), 251.
34 Liu P, Fang C. Science Technology and Engineering, 2012, 12(18), 4549 (in Chinese).
刘萍, 方崇. 科学技术与工程, 2012, 12(18), 4549.
35 Han Q, Gui C, Xu J, et al. Construction and Building Materials, 2019, 226, 734.
[1] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[2] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[3] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[4] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[5] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[6] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[7] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[8] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[9] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[10] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[11] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[12] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[13] 高瑞晓, 王剑云. 微生物矿化沉积碳酸钙技术修复混凝土既有微裂缝研究进展[J]. 材料导报, 2023, 37(1): 21120210-10.
[14] 商怀帅, 柴鑫. 往复荷载下锈蚀钢筋与混凝土粘结性能的试验研究[J]. 材料导报, 2023, 37(1): 21030106-6.
[15] 李孝晨, 丁文艺, 朱霄汉, 郑明杰. 基于机器学习的RAFM钢中子辐照脆化预测模型研究[J]. 材料导报, 2023, 37(1): 22010142-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed